Обратимся к нескольким более поздним работам. В 50-е гг. энтомологи Е.С.Смирнов, С.И.Келейникова и Г.В.Самохвалова выкармливали тлей Neomyzus circumflexus на малопригодных для питания этого вида растениях (вместо вики - на красном перце, горчице, гречихе и др.). Это сначала приводило к снижению плодовитости, а в опытах Самохваловой - также к повышенной смертности тлей, но начиная с седьмого-девятого поколений происходило постепенное “привыкание” насекомых к новым кормам, выражавшееся в увеличении плодовитости (и снижении смертности в опытах Самохваловой). При этом проявлялись морфологические различия с исходной популяцией тлей в рисунке кутикулы спинки, что Самохвалова трактовала как возникновение новой формы тлей. Совершенно очевидно, что и в этом случае речь идет о генетически гетерогенном исходном материале, включавшем тлей с разной наследственной способностью использовать новые корма, скоррелированной с особенностями склеротизации спинки насекомого. В ряду последовательных поколений происходил отбор именно этих изначально наиболее устойчивых к новым условиям особей, и в ходе эксперимента отнюдь не была получена какая-либо новая форма тлей, а просто выделена посредством отбора из разнородных особей линия насекомых, лучше усваивающих необычные корма. Характерно, что Е.С.Смирнов отрицал роль отбора в полученных им результатах на том основании, что примененные в его опытах воздействия не повышали смертности тлей. Однако отбор вовсе не требует обязательной гибели особей — для эффективного отбора совершенно достаточно снижения плодовитости одних и более высокой плодовитости других особей в новых условиях!
Неоламаркисты привлекали также в качестве примера наследования особенностей, вызванных влиянием среды на организм, возникновение так называемых длительных модификаций у простейших, впервые описанных В.Йоллосом в 1920-е гг. Длительные модификации представляют собою постепенные изменения, развивающиеся, например, в популяции инфузорий при длительном воздействии экстремальных условий (высокая температура, различные химические воздействия) и повышающие устойчивость простейших к этим неблагоприятным условиям. Устойчивость к неблагоприятным температурам или химическим веществам сохранялась у инфузорий в течение многих десятков (до сотни) поколений и, следовательно, была наследственной. Позднее при отсутствии новых воздействий экстремального фактора, т. е. в нормальных условиях, длительная модификация исчезает. Подчеркивается, что, во-первых, вся экспериментальная популяция в этих опытах представляла собой клон, полученный путем бесполого размножения от одной исходной особи, и, во-вторых, в эксперименте отсутствовала смертность инфузорий, вызванная действием экстремального фактора. Это истолковывали как “исключение возможности действия отбора”.
Анализ развития длительных модификаций у простейших был сделан Ж. Женермоном. Женермон указал, что прежде всего, хотя экспериментальная популяция инфузорий и представляет собой клон, но у инфузорий, на которых сделано большинство экспериментов, это отнюдь не исключает генетической гетерогенности популяции. Такая гетерогенность возникает у инфузорий на основе специфичности макронуклеусов, приобретаемой в моментдиф-ференцировки макронуклеусов из микронуклеуса при автогамии или даже в течение вегетативной жизни особей. Во-вторых, как и в разобранных выше опытах Е.С.Смирнова, в процессе развития длительных модификаций, очевидно, основную роль играет отбор, влияющий не на смертность, а на темпы размножения: преобладание в популяции получает более многочисленное потомство более устойчивых к действию неблагоприятного фактора особей. Наконец, в развитии длительных модификаций могут играть роль и обратимые изменения цитоплазматических структур, передающиеся следующему поколению через наследственный аппарат цитоплазмы (плазмотип, см. главу 1 ч. II).
Сторонниками Т.Д.Лысенко много говорилось и писалось о вегетативной гибридизации организмов как доказательстве возможности адекватного влияния соматических клеток на половые. При этом под вегетативной гибридизацией понимали возможность получения гибрида не путем гибридизации геномов соматических клеток, что в принципе вполне возможно (например, такой “соматический” (вегетативный) гибрид двух видов табака Nicotiana glauca и N. langsdorfli был получен П.Карлсоном путем слияния изолированных протопластов, извлеченных из мезофилла листьев), а посредством прививок черенков одного сорта или вида растений на растение другого сорта или вида. Это подразумевает обмен организмов наследственными свойствами без непосредственного объединения каких бы то ни было ядерных и вообще внутриклеточных структур через посредство “пластических веществ”, выделяемых клетками. Такая гибридизация невозможна, поскольку в “пластических веществах” отсутствует наследственная информация. Изменения растений, возникшие в результате прививок черенков другого сорта, сами по себе, конечно, вполне реальны и хорошо известны садоводам, но не передаются по наследству. “Вегетативные гибриды” представляют собой генетические химеры - так называют мозаичные организмы, объединяющие в себе клетки, ткани или органы разных организмов. В организмах-химерах клетки с разным наследственным аппаратом сосуществуют, но не обмениваются наследственной информацией. При половом размножении в этом случае половые клетки получают наследственный аппарат только одного типа и фенотипические свойства организма-химеры не передаются потомству. Именно поэтому сортовые качества плодовых деревьев, полученных путем прививок и также являющихся генетическими химерами, не передаются при размножении семенами: из семян вырастает дичок, снова нуждающийся в прививке черенками культурных сортов для приобретения соответствующих сортовых качеств.