Выбрать главу

Необходимыми предпосылками эволюционного процесса являются возникновение элементарных изменений аппарата наследственности - мутаций, их распространение и закрепление в генофондах популяций организмов. Направленные изменения генофондов популяций под воздействием различных факторов представляют собой элементарные эволюционные изменения -микроэволюцию. Микроэволюция завершается формированием новых видов организмов (процесс видообразования). Рассмотрение предпосылок, структурных элементов, факторов и механизмов всех этапов микроэволюции является основным содержанием этой части книги.

Чтобы не нарушать последовательность изложения, в нее пришлось включить также ряд проблем, выходящих за рамки собственно микроэволюционных процессов. Это относится прежде всего к различным межвидовым отношениям, которые оказывают значительное влияние на процессы видообразования. Межвидовые отношения реализуются в природных сообществах разных видов организмов — биоценозах, представляющих собой целостные биологические макросистемы с механизмами авторегуляции. Их преобразования могут иметь уже макроэволюцион-ное значение.

Заключительная глава этой части посвящена развитию приспособлений организмов. Эта проблема также занимает пограничное положение между микро-и макроэволюцией. Формирование приспособлений организмов (адаптациогенез) начинается на уровне микроэволюции, но общий приспособительный характер эволюционного процесса и ряд специфических проблем адаптациогенеза в полной мере проявляются лишь в масштабе макроэволюции.

Таким образом, разделы второй части, посвященные межвидовым отношениям и развитию приспособлений, предваряют переход к проблемам макроэволюции, которым будут посвящены третья и четвертая части книги. Соотношения микро-и макроэволюции как двух уровней системной организации эволюционного процесса и свойства разных категорий биологических систем будут рассмотрены в начале четвертой части.

ГЛАВА 1. ЭЛЕМЕНТАРНЫЕ ПРЕДПОСЫЛКИ ЭВОЛЮЦИОННОГО ПРОЦЕССА: ФОРМЫ ИЗМЕНЧИВОСТИ ОРГАНИЗМОВ

Эволюция основывается прежде всего на возникновении наследственных изменений организмов, которые представляют собой необходимый исходный материал для осуществления эволюционного процесса и, таким образом, являются элементарными предпосылками последнего. Особую роль в приспособлении биологических видов к изменяющимся условиям внешней среды играют и ненаследственные изменения организмов. Для выяснения природы разных форм изменчивости организмов, их соотношений друг с другом и для анализа их эволюционной роли нам необходимо сначала хотя бы кратко остановиться на рассмотрении сущности наследственности.

Современные представления о наследственности организмов

Наследственность организмов, под которой понимается способность передавать от поколения к поколению основные структурные и функциональные свойства, обеспечивающие сходство организации потомков и их родителей, представляет собой одно из фундаментальных качеств живых организмов. Само по себе явление наследственности чрезвычайно давно известно людям, но сущность этого важнейшего свойства организмов стала понятной лишь в середине XX в., когда была доказана роль хромосомной дезоксирибонуклеиновой кислоты (ДНК) в передаче наследственных свойств, а в 1953 г. Дж. Уотсоном и Ф. Криком была расшифрована структура молекулы ДНК.

Хромосомы состоят из молекул ДНК, рибонуклеиновой кислоты (РНК) и некоторых типов белков. Основную роль в аппарате наследственности играет ДНК. Согласно модели Уотсона и Крика, молекула ДНК состоит из двух полинуклеотидных цепочек (рис. 6), спирально закрученных вокруг общей оси. Каждый отдельный нуклеотид включает молекулу (точнее, молекулярный остаток) сахара-циклопентозы (в ДНК - дезоксирибоза) и связанные с ней молекулярные остатки фосфорной кислоты и одного из азотистых оснований (пуриновых - аденина и гуанина, или пиримидиновых - тимина и цитозина). Нуклеотиды связаны друг с другом в полинуклеотидную цепочку, а две соседние полинуклеотидные цепочки связаны друг с другом в одну дву-спиральную молекулу ДНК водородными связями между пури-новыми и пиримидиновыми основаниями разных цепочек. При этом возможны только соединения аденин-тимин и гуанин-цитозин. Нуклеотиды с соответствующими парами оснований могут чередоваться в молекуле ДНК в любом порядке. Именно эта последовательность чередования разных пар азотистых оснований молекулы ДНК и представляет собою запись наследственной информации. При этом различные комбинации оснований в последовательных тройках (триплетах) нуклеотидов кодируют разные аминокислоты в молекулах полипептидов, синтезируемых в клетке. Отдельные гены представляют собой участки молекулы ДНК, обладающие определенной биохимической функцией (например, ответственные за синтез определенного типа белковых молекул).