Этот факт важен в двух отношениях. С одной стороны, он подчеркивает неопределенный, неприспособительный характер мутаций, с другой - многократное появление у разных особей данного вида организмов одних и тех же мутаций. Из этого следует чрезвычайно важный вывод: всякий генотип имеет хотя и большие, но вполне конкретные возможности мутационных изменений, определенный спектр изменчивости. Одни и те же мутации с определенной регулярностью появляются в пределах популяций данного вида вновь и вновь. И с другой стороны, некоторые изменения, кажущиеся столь же вероятными, никогда у этого вида не наблюдаются. Например, среди различных видов мух-Дрозофил, вероятно наиболее изученных в генетическом отношении животных, никогда не наблюдались особи с зелеными или синими глазами. Поскольку генетиками изучено уже около двух миллиардов (!) мух, вероятность обнаружения указанных мутаций в будущем выглядит ничтожной. По-видимому, в геноме дрозофил нет каких-то предпосылок, необходимых для возникновения таких мутаций, хотя подобные окраски глаз нередко наблюдаются у других видов насекомых. Для дрозофил эти мутации являются по каким-то причинам невозможными (“запрещенными”).
Мутации могут происходить на разных уровнях организации наследственного аппарата: на уровне полного хромосомного набора (генома) клетки, на уровне его морфологически обособленных частей — хромосом и на уровне его структурно-функциональных единиц - генов.
Геномные мутации представляют собой изменения количества хромосом, которые могут происходить либо путем кратного увеличения числа целых (гаплоидных) наборов хромосом, либо посредством изменения числа отдельных хромосом в геноме, в результате чего общее число хромосом становится не кратным гаплоидному.
Увеличение числа целых хромосомных наборов (плоидности) в клетке называется полиплоидизацией, изменение числа отдельных хромосом в геноме - анеуплоидией, или гетероплоидией. Фенотипический эффект геномных мутаций основан на взаимодействии генов или их комплексов, расположенных в соответственных (гомологичных) хромосомах, число которых изменилось в результате данной мутации. Вероятно, это взаимодействие осуществляется через посредство продуктов белкового синтеза (ферментов) или РНК, транскрибированной с ДНК соответствующих хромосом.
Геномные мутации обычно приводят к стерильности мутантов в результате невозможности осуществления полового процесса с представителями родительской формы, сохранившими нормальное количество хромосом. Поэтому у животных относительно редко геномные мутации дают начало новым формам - это возможно только при способности данного вида размножаться бесполым способом, или посредством партеногенеза, или гиногенеза (гиногенез - способ размножения, при котором сперматозоид проникает в яйцеклетку и стимулирует ее развитие, но его ядро не сливается с ядром яйца и не участвует в развитии зародыша). Среди растений бесполое размножение распространено гораздо шире, чем среди животных. В связи с этим у растений полиплоидизация, вероятно, играла существенную роль в эволюционном процессе.
Обычно различают автополиплоидию и аллополиплоидию. Автополиплоиды образуются посредством увеличения числа хромосомных наборов у отдельных особей одного вида. У автополиплоидов каждая хромосома представлена одним и тем же числом гомологов, например в клетках тетраплоидов имеется по четыре гомологичные хромосомы, у октоплоидов - по восемь и т. д. Аллополиплоиды образуются посредством гибридизации организмов разных видов. У аллополиплоидов соответствующие хромосомы уже в определенной степени утратили свою гомологичность. Поэтому процесс мейоза, в котором осуществляется редукция числа хромосомных наборов перед половым процессом, у аллополиплоидов обычно нарушен. Аллополиплоиды могут сохраниться как новый вид, если способны к бесполому размножению.