Еще одна загадка. На первый взгляд внутриплитовый вулканизм хаотично разбросан по всей планете. Но более пристальное изучение показывает, что вулканы группируются в две крупные области, каждая из которых имеет в поперечнике шесть-девять тысяч километров, почти четверть земной сферы. Африкано-атлантическая область включает в себя вулканы Исландии на северо-западе, Азорские острова, Центрально-Французский массив, вулкан Тибести в Африке, вулканы островов Вознесения, Святой Елены, вулканы Индийского океана, Маврикий, Реюньон, Сент-Поль и Амстердам. Другую область можно назвать тихоокеанской. Она включает в себя вулканы острова Пасхи, Сала-и-Гомес, Гавайские острова, Туамоту...
Есть и более мелкие области - центрально-азиатская, куда входят вулканы Восточных Саян, Забайкалья и Монголии, и австралийская, куда включаются вулканы Эребус в Антарктиде, остров Балени и австралийские вулканы.
Между этими областями расположены пространства, на которых практически нет внутриплитового вулканизма. Особенно хорошо это видно в полосе,
проходящей от Индии через Гималаи Западную Сибирь, Восточно-Европей^ скую возвышенность. Здесь не видно никаких проявлений внутриплитового вулканизма по крайней мере за послед. ние пятьдесят миллионов лет. Друга, такая область проходит через Южную и Северную Америки.
По аналогии с "горячими точками" можно было бы ввести понятие "горячих полей" для тех областей, где наблюдается внутриплитовый вулканизм. "Горячие поля" в мантии Земли.
Но дальше следует еще одно открытие. Оказывается, что с "горячими полями" связаны самые крупные нарушения в форме геоида Земли. В последние годы Земля с помощью спутников обследована очень детально, и с точностью до нескольких метров установлена форма геоида - реальная форма Земли. Выяснено, что есть два крупных поднятия, где геоид на 50-70 метров поднимается над эллипсоидом вращения. А есть места, где на такое же расстояние геоид опущен.
Оказалось, что одно из поднятий совпадает с африкано-атлантическим "горячим полем", второе - с тихоокеанским.
А в районе Индии - очень глубокий минимум в форме геоида. Поскольку форма геоида отражает события, происходящие на больших глубинах Земли, естественно сделать предположение, что и "горячие поля" - отзвук глубинных процессов.
Наконец, последняя особенность внутриплитового вулканизма-его геохимическое выражение. Химия вулканических пород изучалась очень детально. Главные их компоненты - кремнезем, глинозем, окислы железа, магния, кальция, калия, натрия - известны давно. Гораздо меньше были изучены малые добавки рассеянных элементов, таких, как рубидий, стронций, литий, галлий, европий и другие. Не был известен и изотопный состав^ химических элементов, слагающих вул^ канические породы, jj
оказалось, что именно рассеянные депонты и изотопные
_ главные опознавательные знаки, оторые говорят нам о том, что происодит в глубине Земли. Геохимики выделяют группу элементов с крупными ионными радиусами, такие, как руб^дий, барий, стронций, самарий, европий. Их особенность в том, что они не совместимы с другими элементами и ведут себя очень "независимо" в геохимических процессах при плавлении и разделении магмы на фракции. Их количество остается более или менее постоянным как в начальном продукте, так и в лаве, поступившей на поверхность. Соотношение этих элементов между собой - своеобразный индикатор геохимических особенностей того вещества, из которого произошел магматический расплав.
В последнее время геохимики очень пристально изучают эти элементы. Изучение изотопов стронция, неодима, гафния дало возможность судить о том, что происходит в глубине Земли. Например, отношение радиоактивного изотопа стронция-87 к нерадиоактивному изотопу стронция-86 со временем меняется, стронций-87 будет накапливаться. То же самое происходит с изотопом неодима-143, который образуется при распаде из изотопа самария-147.
Изотопное соотношение в породах одного и того же происхождения сохраняется в течение геологической истории. Если мы знаем время, когда были запущены изотопные "часы", то можем рассчитать и время образования самой породы. Можем судить и о тех условиях, в которых эти породы образовались.
Когда геохимики начали изучать базальты (продукты непосредственного выплавления из мантии Земли), выяснилось, что есть две группы базальтов. Первая слагает ложе океана, а вторая появляется в результате внутриплитового вулканизма. Базальты срединноокеанических хребтов обладают постоянным составом. В них очень мало
редких элементов с крупными ионными радиусами и очень низкое соотношение изотопов стронция.
Базальты, появившиеся в результате извержения вулканов внутри плит (на Гавайских и Азорских островах, в Исландии, в Западной Европе), содержат, оказывается, в два, а иногда и в три раза больше редких элементов. Несмотря на одинаковый химический состав этих двух видов базальтов (в них равное содержание кремнезема, глинозема, магния, кальция, железа), содержание элементов с крупными ионными радиусами в них совершенно различное. И это накладывает на породы такой отпечаток, что отличить эти базальты друг от друга не составляет труда. Изотопные отношения (различных изотопов стронция, например) у них тоже совершенно другие, чем у базальтов океанического дна.
Именно поэтому геохимики начали говорить о существовании двух источников магмы. Один питает базальты срединно-океанических хребтов. Другой - богатый редкими элементами - дает внутриплитовые базальты океанических островов и континентов.
Какие тут возможны объяснения? Одно из них: под срединно-океаническими хребтами и под внутренними частями - разные термодинамические условия. При больших температурах и давлениях, которые существуют под вулканическими островами, создаются условия для обогащения лав щелочами и литофильными (редкими) элементами. Другое предположение: неоднородность существует в самой мантии. В ней самой есть участки, богатые литофильными элементами, а есть участки, лишенные их.
Но когда геохимики провели некоторые расчеты, то оказалось, что существует баланс: кора океаническая и кора континентальная дополняют друг друга по составу. В сумме содержание литофильных элементов в коре обоих типов такое же, как в первичном веществе Земли. Геохимики попытались
50
51
проследить, как ведут себя изотопные соотношения с продвижением в глубь Земли. Когда начинается разделение радиоактивных элементов на различные ионы? Оказалось, что изотопные часы были запущены полтора-два миллиарда лет назад. Очевидно, именно в это время произошло важнейшее событие в жизни Земли - разделение верхней мантии на две геохимически различные фазы: континентальную и океаническую. Причины этого события пока неясны, остается лишь догадываться, почему это произошло.
Дальнейшие исследования показали, что лава вулканов, приуроченных к "горячим точкам", имеет состав, отличный и от состава континентальной коры. Здесь изливается на поверхность лава, которая по своему составу больше всего напоминает первичное вещество Земли. Так с помощью геохимии были найдены три источника, питающие современный вулканизм. Один из них поставляет лаву, выходящую из рифтов океанического дна, другой - ту лаву, которая рождается из континентальной коры, и третий дает то вещество, которое вырывается на поверхность в извержениях внутриплитовых вулканов и в траппах на континентах,
Эти проблемы обсуждаются сейчас на всех конгрессах, конференциях, совещаниях ученых. Можно сказать, что мы присутствуем при рождении новой области знаний о Земле. Здесь еще много догадок, гипотез, предположений, но геологи упорно ищут ответы на вопросы, которые ставит перед ними Земля.
Как появились эти различные резервуары мантийного вещества и где они находятся? Одна из гипотез предполагает, что неистощенное мантийное вещество сконцентрировано в верхней мантии. Большая же часть геохимиков считает, что где-то на рубеже двух миллиардов лет произошло разделение первичного однородного вещества мантии Земли. Выделилась верхняя мантия, которая, в свою очередь,
билась на две части - континентальную кору, богатую редкими элементами, и мантию под океанами. Континен-" тальная кора легче океанической - aoJ откуда появилась у континентальны^ плит возможность передвигаться. ..