Проблема эта сегодня приобрела особую остроту в связи не только с размахом высотного строительства, но и с его особенностями. Например, многие старые города с узкими улицами спешат обзавестись небоскребами в несколько десятков этажей. Именно эти здания, значительно возвышающиеся
над остальными, и вызывают неприятные явления.
Вырастая как преграда на пути движущихся воздушных масс, стены небоскребов не только отклоняют их вверх или дробят на потоки, обтекающие здания по сторонам. Значительная часть воздуха устремляется вниз и, попав в узкие ущелья улиц, превращается в мощные вихри. Известен, например случай, когда подобный вихрь опрокинул почтовый автомобиль, стоявший на площадке вблизи от одного из небоскребов в Бостоне.
Именно вихревой характер порывов возникающих на городских улицах, больше всего беспокоит специалистов. Известно, например, что человек среднего роста может быть повален ветром, дующим со скоростью 65 километров в час. Постоянный воздушный поток со скоростью 35 километров в час - серьезная помеха для пешеходов. Но они испытывают те же неудобства и при скорости ветра всего 15 километров в час, если воздушный поток становится вихревым.
Чтобы избавить пешеходов от коварных нападений ветра, градостроители обратились за помощью к аэродинамикам. Но оказалось, что картина образования вихрей в зоне небоскребов настолько сложна, что не поддается расчетам даже с помощью ЭВМ. А традиционные аэродинамические трубы малопригодны для моделирования этих явлений.
Пришлось создавать специальные аэродинамические трубы, в которых, чтобы сделать картину течений видимой, применяется окрашенный дым или светящиеся газы. Модели же изучаемых зданий обычно испытываются в двух вариантах: одна - жесткая, с множеством отверстий для измерения давления в наиболее ответственных точках, другая - гибкая, из магниевых или алюминиевых пластин, позволяющих изучать колебания сооружения. Процессы, происходящие во время экспериментов, фиксируются
ми. А результаты измерений обрабатываются с помощью компьютеров.
В ходе таких экспериментов изучались высотные здания самой разной конфигурации. Оказалось, что наисильнейшие вертикальные потоки, идущие вниз, создают небоскребы в виде однообразных, одинаковых от первого до последнего этажа прямоугольников. У их основания, особенно заворачивая за угол, эти потоки и превращаются в вихри, похожие на смерчи. Образованию вихрей способствуют и входы в здание, втянутые внутрь. Иное дело, если здание имеет ступенчатую форму, когда его высотная часть располагается на более широком основании. В этом случае крыша основания отражает идущие вниз воздушные потоки, не давая им достичь уровня улицы.
Немалые сложности возникают в тех случаях, когда высотное здание располагается на колоннах или его основание изобилует арками, в которых свободно "гуляет ветер". Дело в том, что с подветренной стороны здания давление всегда ниже, чем с наветренной. За счет этой разности давлений скорость воздушных потоков в таких проемах может возрасти в три раза и достичь критической величины.
Резкие порывы ветра, доставляющие неприятности пешеходам, могут возникать и за счет эффекта Вентури. Почти двести лет назад итальянский физик установил, что газ или жидкость, текущие по трубе, увеличивают скорость и теряют давление, проходя через ее суженную часть. В городах это явление наблюдается, например, в тех случаях, когда воздушный поток с широкой открытой площади врывается в ущелье улицы из стоящих вплотную Друг к другу домов.
Проектируя высотные здания, архитекторам приходится не только учитывать эти закономерности, но и продувать в аэродинамических трубах модели целых кварталов. Для борьбы с вихрями на улицах применяются и дополнительные архитектурные элементы в
виде посадок деревьев, кустарников, небольших торговых павильонов. Чтобы получить нужный эффект, их нужно разместить точно в зоне зарождения вихрей. Этого и помогают добиться эксперименты в аэродинамических трубах.
ЗНАКОМЬТЕСЬ: ТЕКСТИЛЬБЕТОН
Полотнища автострад стали объектом исследований, в результате которых специалисты пришли к выводу: возникающие на них трещины в основном вызваны низкой прочностью бетона на растяжение. Чтобы повысить ее, ученые предложили использовать нитки. Точнее, мелко порезанные отходы текстильного производства. Испытания показали, что такие "сшивки" делают бетонную массу более однородной и значительно повышают ее прочность. Благодаря этому расходы материала на квадратный метр дороги могут быть снижены на 40 процентов. И несмотря на это, шоссе из текстильбетона будет служить в два раза дольше обычного.
ВОЛНА 1" ВМЕСТО ВИБРАТОРА
Широко используемые в строительстве вибраторы не лишены существенного недостатка - слишком шумят, Сотрудники Варшавского
"\ ческого института, заменив электромеханический механизм... водой, сконструировали принципиально новое оборудование для домостроительных комбинатов. На бетонную панель укладывается плоская рабочая плита вибратора, оснащенная системой труб, резервуаров и клапанов. В момент прохождения воды через эту систему один из клапанов автоматически закрывается. Происходит резкое торможение потока жидкости, и по слою воды проходит так называемая волна давления, которая и заставляет плиту вибрировать с частотой от 45 до 90 герц.
Новый способ бесшумен, безопасен для персонала, оборудование практически не изнашивается, легко приспосабливается к различным производственным установкам.
ДАВЛЕНИЕ ПЛЮС ВИБРАЦИЯ
Дорожное покрытие получится плотнее, а значит, и более высокого качества, если при его трамбовке использовать не только давление, но и вибрацию. Но для этого строителям необходимо иметь по крайней мере два агрегата; каток и вибратор. Чехословацкие специалисты создали своеобразный гибрид - самоходную машину, у которой вибрирует сам тяжеловесный стальной валок. Он крепится шарнирно на раме перед двумя ведущими резиновыми колесами. Кстати, благодаря им каток может работать и на горных Участках с уклоном дороги до 45 процентов. Машина хорошо трамбует покрытие на глубину до полуметра.
БУМАГА ИЗ ЛИСТЬЕВ
Как известно, бумагу делают из целлюлозы, которая содержится в древесине. При этом листья выбрасывают. Венгерские ученые создали технологию получения бумаги из листьев. В Будапеште уже построен опытный завод по производству новой бумаги. Результаты более чем обнадеживающие.
Перед рыбаками всегда стояла проблема: как подольше сохранить улов свежим? Холодильники есть далеко не на каждом судне. А главноепребывание в них отражается на качестве продукта. Можно ли отказаться от холода? А заодно- и от нагревания, которое сопутствует приготовлению консервов? Задавшись этими вопросами, специалисты разработали новый способ сохранения улова. Суть его в том, что свежую рыбу "одевают" в своего рода вторую кожу из натуральных белковых веществ. Они изолируют ее от кислорода воздуха, микроорганизмов, не дают размножаться анаэробным бактериям. Сама же пленка, создаваемая поверх чешуи, прозрачна, абсолютно безвредна и легко удаляется при жарений и варении.
294
295
ИЗОБРАЖЕНИЕ ПО ТЕЛЕФОНУ
Видеотелефон - давнишняя мечта человечества. Но созданные до сих пор его образцы так и не получили широкого распространения. Почему? Большинство из них были построены на принципах телевидения, где для передачи изображения нужны каналы связи с большой пропускной способностью.
Но вот идет эксперимент, в ходе которого изображения людей и предметов передаются... по обычному телефонному каналу связи. Собеседника видно на телеэкране одновременно с разговором. Так действует "Телеизограф" экспериментальная аппаратура, разработанная специалистами проблемной лаборатории применения техники цветного телевидения в полиграфической промышленности Ленинградского электротехнического института связи имени М. А. Бонч-Бруевича.
С помощью телекамер операторы управляют сегодня прокатными станами, диспетчеры - составлением поездов на железнодорожных узлах. Медикам телевидение помогает следить за состоянием сразу нескольких пациентов. Но есть еще немало областей, где также требуется качественная передача изображений на расстоянии, но где применять обычную телевизионную технику экономически невыгодно. Ведь для передачи всего широкого спектра телевизионного сигнала требуется и дорогостоящая аппаратура, и прокладка специального кабеля.