Выбрать главу

для изучения структуры Земли и, в частности, для разведки полезных ископаемых. Поскольку частицы для этой цели надо ускорять до очень высоких энергий (триллионов электрон-вольт), то длина окружности такого ускорителя - геотрона - составит десятки километров. Кроме того, для "просвечивания" Земли надо иметь возможность менять направление пучка нейтрино (вплоть до поворота на 90 градусов), поэтому необходимо специальное устройство (так называемый "хобот") в виде цепочки сверхпроводящих магнитов, заключенных в гибкую трубу. Размеры "хобота" также могут достигать нескольких километров.

Нейтрино обладают способностью проникать сквозь любые вещества.

Если пучок этих частиц направить в землю под небольшим (4-5 градусов)

углом к горизонту, то он "прошьет"

земную кору на расстояние в 1000 километров от геотрона, при этом максимальное углубление его трассы от поверхности Земли составит 20 километров (отметим, что буровая техника такой глубины еще не достигала). По пути нейтрино взаимодействует с горными породами, слагающими земную кору - с каждой по-своему,- и по особенностям этого взаимодействия можно судить о тех веществах, которые встретились нейтрино. Так можно вести поиск полезных ископаемых.

Для просвечивания земного шара с целью уточнения его структуры целесообразно построить плавающий в море ускоритель с "хоботом", направленным к центру Земли (угол поворота 90 градусов). При необходимой в этом случае энергии нейтринного пучка длина "хобота" должна быть примерно 6 километров.

Осуществление проекта в целом наталкивается на определенные научные и технические трудности, но его окончательное решение - дело будущего.

Цифровое телевидение:

новые возможности, заманчивые перспективы

Как полагают специалисты, телевидение пересечет рубеж XX и XXI веков двумя большими скачками. Сначала его прогресс будет связан с развитием спутниковых телекоммуникаций. Затем наступит эра обширных плоских экранов с очень четким изображением.

Трамплином для обоих этих скачков станет переход телевидения к качественно новой форме представления и обработки сигналов - цифровой.

Значение телевидения в современном мире трудно переоценить. Только у нас в стране около 90 миллионов телевизионных приемников. Возникает почти парадокс: телевизоры есть практически в каждой семье, а спрос на них продолжает расти. Этому способствует и развитие телекоммуникаций радиорелейных,кабельных,космических. Телепрограммы в нашей стране ретранслируют 7 искусственных спутников Земли, работающих через 10 каналов связи. 90 приемных станций "Орбита", 300 станций "Москва"

и более 3000 "Экран" обслуживают радиомосты Земля - космос - Земля. Выпускаются простые и недорогие приставки к домашним телевизорам, позволяющие вести прием непосредственно с борта спутника "Экран".

Телевидение сегодня продолжает совершенствоваться. Во всем мире идет поиск новых его систем, все более удовлетворяющих взыскательные вкусы миллионов и миллионов телезрителей. Появились экспериментальные образцы систем так называемого "сверхчеткого" телевидения с улучшенной цветопередачей. По качеству изображения оно ненамного уступает проекции цветного слайда. Наметилась тенденция к переходу на крупноформатное изображение на плоском экране. Кроме того, произошла переоценка возможностей телевидения как информационной системы, причем не только в региональных, но и в глобальных масштабах. Однако практическая реализация этих и других интересных проектов наталкивается на почти непроходимый барьер, в основе которого принципиальные недостатки, свойственные широко распространенным во всем мире аналоговым телевизионным системам.

В чем суть проблемы? Аналоговые системы обработки информации имеют дело с непрерывными сигналами - своеобразными электрическими слепками оригинала, например речи или музыки. В цветном телевидении электронные лучи фиксируют все нюансы сцены, и каждый из них должен быть передан без искажений. По существу, вся история аналогового телевидения была борьбой за высокую точность передачи и воспроизведения изображений. Увы, как раз его-то даже самая совершенная аппаратура обеспечить не может. На сложном пути от зрачка телекамеры до кинескопа телевизора каждое звено неизбежно вносит пусть небольшую, но вполне определенную лепту искажений. Постепенно они накапливаются и, случается, настолько портят сигнал, что неопытный телезритель кидается регулировать аппарат, думая, что тот вышел из строя.

Цифровые системы обладают одним важнейшим преимуществом. Язык цифр это родной язык вычислительной техники. Недаром среди инженеров популярна шутка: использование в телевидении микропроцессорной техники открывает возможности, ограниченные лишь воображением разработчика и отпущенными финансовыми средствами.

Суть цифровой системы в телевидении заключается в том, что здесь традиционный непрерывный сигнал заменяется цифровым кодом, который содержит подробную информацию обо всех деталях изображения - яркости, цветности, месте в кадре и т. д.

Импульсы в форме цифровых кодов из студии телецентра поступают на ретрансляторы и далее - в эфир, а телевизионные приемники снова преобразуют их в изображение высокого качества. Такой способ передачи видеоинформации весьма надежен.

Инженеров уже не будут заботить проблемы всякого рода искажений.

Имея в своем распоряжении цифровой код, легко обнаружить возможную пропажу импульса и восстановить на его месте точно такой же.

Вместе с тем у передачи изображения в цифровой форме есть и свои сложности: она порождает информационные потоки огромной емкости.

Достаточно сказать, что каждую секунду нужно передавать около 200 миллионов импульсов, а для телевидения высокой четкости еще больше. Советским ученым, взявшимся за решение этой проблемы, помогла бионика. В основе созданной у нас в стране сложнейшей системы бионического кодирования телевизионных сигналов лежит принцип восприятия и обработки изображения человеческим глазом. Мы не можем пожаловаться на этот уникальный аппарат, созданный природой.

Наш глаз выворочен в восприятии информации, но и объективно точен.

Именно выборочность и точность отличают электронные системы бионического кодирования, которые без потери качества позволили снизить цифровой поток почти в семь раз.