Для силовых установок большей мощности разработчиками, например, принята так называемая соосная схема, когда на одном валу находятся как бы два винтовентилятора с противоположным направлением вращения. Такое решение, кроме уменьшения диаметра и устранения реактивного крутящего момента на крыле, дает еще дополнительную экономию топлива.
Из-за большого количества лопастей, сложной формы с саблевидным отгибом и тонкого профиля оказалось невозможным воплотить изделие в традиционном алюминиевом сплаве. Выручили композиционные материалы - армированные пластики на основе стеклянных, угольных, органических волокон.
Среди экспонатов аэрокосмического салона в Париже внимание зарубежных специалистов привлек первый полноразмерный соосный винтовентилятор, демонстрировавшийся в советском павильоне.
Все расценили его появление на международном смотре новинок как верный признак того, что в недалеком будущем пассажирские и транспортные самолеты мы увидим с винтовентиляторными двигателями. А пока конструкторы и ученые продолжают работать, чтобы к началу серийного производства решить все стоящие перед ними проблемы.
Дирижабли нового поколения
Гигантские грузовые дискообразные дирижабли проектируются в Московском авиационном институте. Дискообразная форма придает аппарату дополнительную аэродинамическую подъемную силу. Дирижабль, наполненный горячим воздухом, с внешним диаметром около 150 метров, будет иметь грузоподъемность 300 тонн, дальность полета 4 тысячи километров.
Скорость 150 километров в час.
В центральной части дирижабля разместится платформа, которую на тросах можно опустить на землю,так что он сможет производить погрузку и выгрузку, не совершая посадки. Силовая установка гигантского дирижабля будет примерно такой же, как у советского пассажирского самолета Ту-114,-четыре турбовинтовых двигателя, работающих на керосине или сжиженном природном газе, но расход топлива будет в 4-5 раз меньше, чем у самолета.
Электропаровоз
Однажды инженер из уральского города Краснотурьинска Г. "опытов нагрел в стакане алюминатный раствор (алюминаты-это соли алюминиевой кислоты). Когда температура поднялась, стакан вдруг заерзал по электроплитке, словно что-то толкало его изнутри. Заглянув в стакан, инженер увидел, что из осадка на дне то там, то тут вырывались пары, толкавшие стакан, словно маленькие реактивные двигатели. Энергия пара напрямую переходила в механическую, и не нужны были ни поршни, ни цилиндры. Но какую пользу из этого явления можно извлечь? Паровоз вроде уже изобретен, пароход - тоже...
На столе-тележка на четырехКолесиках с торчащей вверх трубой. Она похожа на паровоз отца и сына Черепановых. За тележкой тянется к прерывателю тока электрический шнур. Щелкает выключатель, и "паровозик" трогается в путь, правда, задом наперед.
Иногда даже брызги воды вырываются, словно пар из трубы. Если бы корпус тележки был прозрачным, были бы видны установленные в хвосте машины электроды, между которыми каждую четверть секунды проскакивает электрический разряд. После разряда в воде, которой заполнен корпус тележки, возникает воздушный пузырь, такой, как при нагревании на плитке. Воздух отбрасывает воду в трубу, а реактивная сила толкает машину. Вода же ударяется в отбойную плиту, установленную в конце трубы, и откатывается обратно в корпус. Теперь реактивная сила по всем правилам механики должна направить тележку вспять, но этого не бывает, поскольку на оси установлен храповичок, позволяющий колесам катиться только в одном направлении. Четыре импульса в секунду толкают электропаровоз.
Чтобы изменить направление движения, достаточно перекинуть храповичок, как это делается, например, в винтовых автомобильных домкратах.
А где можно применить необычный двигатель? Скорость даже этой маленькой модели - полметра в секунду, то есть вполне достаточная, чтобы протаскивать через трубу, скажем, ультразвуковой дефектоскоп или окрасочный агрегат. Двигатель можно сделать таким маленьким, что он сможет протягивать электрические провода через трубы диаметром 50-60 миллиметров, например при монтаже или ремонте электрических проводок в стенах домов.
В более крупном исполнении может получиться, например, экологически чистый двигатель для внутрицехового транспорта.
100 миллилитров на 100 километров
Рекорд топливной экономичности установлен на легкой трехколесной мотоколяске во время состоявшихся в Сиднее соревнований. Легкая алюминиевая обтекаемая сигарообразная мотоколяска с двигателем рабочим объемом 13 кубических сантиметров, в которой водитель находится в лежачем положении, на одном галлоне бензина прошла 2948 миль. То есть на 100 километров пути ей потребовалось менее 100 миллилитров горючего.
Современному автомобилю, даже такому экономичному, как "Жигули", все-таки требуется на сто километров пути более семи литров бензина. Конструкторы всего мира стремятся уменьшить расход горючего.
Автомобильный мотор с микропроцессором
В Научно-исследовательском и экспериментальном институте автомобильного электрооборудования и автоприборов (Москва) разработана микропроцессорная система управления двигателями внутреннего сгорания легковых автомобилей ГАЗ, ВАЗ, АЗЛК и ЗАЗ.
Использование этой системы позволяет экономить примерно 7 процентов бензина по сравнению с его расходом в обычных условиях, облегчает пуск холодного двигателя и снижает токсичность выхлопных газов.
Объект контроля - бодрость машиниста
Машиниста локомотива хвалят, когда поезд идет без резких толчков, равномерно постукивая колесными парами на стыках рельсов. Однако такое плавное движение таит для человека опасность: от монотонности дороги он может утомиться и задремать.
Поскольку даже преддремотное состояние человека, управляющего локомотивом, чревато серьезными происшествиями, создаются различные системы слежения за его самочувствием. Наибольшее распространение сейчас получила система с "рукояткой бдительности": машинист во время работы должен определенным образом нажимать эту рукоятку. Существенный недостаток- такого контроля в том, что иногда человек и в глубоком сне может рефлекторно выполнять запрограммированное в мозгу действие.