Где и как происходит этот фазовый переход?
Известно, что появлению смерча обязательно предшествует образование мезоциклона - воздушного вихря диаметром 5-10 километров. Возникающий при столкновении холодных и теплых фронтов мезоциклон принимает вертикальное положение и уходит в верхние слои атмосферы на высоту 12-15 километров. Однако при этом нижняя его кромка находится в двух-трех километрах от земли. И если она вторгается в область, где уже созрела грозовая обстановка и скопилось много дождевой воды, то обычно мирный мезоциклон порождает смерч:
нижняя горловина мезоциклона засасывает скопившиеся массы воды, забрасывает их в верхние слои тропосферы, закручивает и сбрасывает вниз в виде вращающегося потока очень холодной воды и тающего града, которые и образуют воронку.
Итак, первый импульс, начало фазового перехода происходит на высоте 10-15 километров.
Если вода в мезоциклоне иссякнет, воронка станет легче воздуха и уйдет в облака. Чтобы этого не произошло, смерч в дальнейшем должен сам добывать воду с земли и доставлять к нижней горловине мезоциклона. И здесь вода начинает проявлять себя в совершенно неожиданной роли - топлива. Поскольку на высоте 2-3 километра температура воздуха всегда ниже нуля, распыленная вихрем вода быстро замерзает и выделяет при этом теплоту фазового перехода "вода - лед".
Это тепло подогревает воздушные потоки, приносимые воронкой, и они остаются всегда теплее окружающего воздуха, что придает им подъемную силу и ускорение. Чем больше воды будет доставлено на высоту 2-3 километра, где находится "кухня" фазового перехода, тем более мощные восходящие потоки возникнут в мезоциклоне, тем мощнее станет воронка смерча.
Иными словами, подобно мифическому Антею, смерч черпает свои силы при контакте с землей (вернее, водой на ее поверхности). Он становится катастрофическим, если проносится по местам, где может всосать в себя воду озер, рек и других водоемов. Поэтому столь причудлив бывает путь смерча, рыскающего в поисках воды - своего топлива.
Справедливости ради отметим: воду он засасывает весьма рационально ровно столько, чтобы вдохнуть в себя новые силы и не потерять вращение при контакте с землей. Этот оптимум - примерно 1 килограмм воды на 1 кубометр воздуха - позволяет поддерживать плотность стенок воронки и создавать мощные восходящие потоки в мезоциклоне. Если воронка встречается с глубоким водоемом и захватывает слишком много воды (например, в море плотность "добычи" может оказаться 10 и более килограммов на кубометр), то такой поток не способен подняться выше 500-1000 метров и оказывается балластом для смерча.
Поэтому смерчи в море слабы. Наоборот, если воды окажется мало (меньше 200-300 граммов на кубический сантиметр), то вихрь сможет поднять ее до высот 5-8 километров. Однако запасов тепла, выделенного фазовым переходом, будет недостаточно для создания "тяги", и смерч погибнет. Поэтому в пустынях и полярных широтах, где в атмосфере влаги мало, эти катастрофические явления не наблюдаются.
Обещает ли теория Кушина решить наконец проблему прогнозирования смерчей - торнадо?
Ясно уже хотя бы одно: чтобы предвидеть возможность смерча, надо знать, где возникает мезоциклон и может ли он встретиться с областью скопления влаги. Оба эти явления в атмосфере весьма быстротечны, и обнаружить их существующими системами наблюдений не удается. Поэтому, по мнению директора Гидрометцентра СССР Александра Васильева, основанное на теории Кушина прогнозирование этих опасных стихийных явлений требует создания новых систем наблюдений и резкого увеличения мощностей вычислительной техники.
Искусственный смерч - даровая энергомашина1
Подведем итог. Смерч напоминает собой газовую горелку высотой 5- 10 километров, только в этой горелке сгорает не газ, мазут или уголь, а обычная вода, причем роль шлака, золы играет образующийся лед. Воронка смерча - "газопровод" этой горелки.
Раскрытие физической природы смерча позволяет задаться вопросом: а не стоим ли мы перед возможностью принципиально новой энергетики?
В природе имеются практически неисчерпаемые запасы тепловой энергии на поверхности земли в виде воды. И столь же безграничен океан холода с температурой минус 40-60 градусов Цельсия в тропосфере, созданный полем тяготения Земли. Природа с помощью смерчей использует эту даровую энергию.
Очевидно, если бы смерч стоял на одном месте, то часть его восходящего воздушного или падающего дождевого потока можно было бы направить на турбину и получать электроэнергию.
Виктор Кушин убежден в возможности создания искусственного смерча как практически даровой энергетической машины. Для этого, говорит он, на поверхности земли надо по касательной к окружности (диаметром 200- 300 метров) расположить специальные воздуховоды. В них будет подаваться воздушно-водная смесь. Затем над этой площадкой на максимальной высоте надо распылить, скажем, 500 тонн нефти и сжечь ее. Возникающий при этом мощный восходящий воздушный поток, закрученный воздуховодами, поднимет смесь на "кухню". Там вода превратится в лед, и за счет выделен
ного при этом тепла создастся тяга, необходимая для поддержания восходящего воздушно-водяного потока.
Образующийся там же наверху поток дождя обрушится вниз и создаст стенки воронки смерча. В основании воронки можно расположить турбину с электрогенератором, которая будет вращаться либо от восходящего воздушного потока, либо от падающего, скрученного дождя. Такой искусственный смерч можно поддерживать и удерживать на месте столько, сколько нужно, питая только по воздуховодам смесью из воды и воздуха в оптимальной концентрации.
В этом случае мощная турбина могла бы производить 2 тысячи мегаватт при расходе воды 60 тонн в секунду.
Что может дать искусственный смерч мировой энергетике?
Сегодня для удовлетворения потребностей человечества в энергии необходимо сжигать около 5 миллиардов тонн условного топлива ежегодно.
Такое потребление стремительно сокращает запасы ископаемого топлива.
Между тем аналогичное количество тепла можно получить... замораживая воду. Правда, ее придется расходовать в 100 раз больше, однако в отличие от ископаемого топлива ее запасы на планете практически неисчерпаемы.
Кислотные дожди и межгосударственные конфликты
Когда затрагивают тему кислотных дождей, обычно вспоминают случай, происшедший в США в конце 70-х годов в небольшом городке Уилинге в штате Западная Виргиния. Моросивший там в течение трех дней дождь был более кислым, чем лимонный сок.
Специалисты констатировали, что кислотность выпавших в Уилинге осадков превысила нормальную кислотность дождя в 5 тысяч раз.
Ущерб, причиняемый такими дождями, невероятно велик. Страдает здоровье людей, наносится урон лесам, почвам, рекам и озерам, сельскохозяйственным культурам, зданиям.
В Канаде, например, из-за частых кислотных дождей более 4 тысяч озер объявлены мертвыми, еще 12 тысяч - на грани гибели. Нарушено биологическое равновесие 18 тысяч озер в Швеции. В Норвегии исчезла рыба в половине озер южной части страны.
Огромный урон кислотные дожди наносят лесам, садам, паркам. Опадают листья, молодые побеги делаются хрупкими, как стекло, и гибнут. Деревья становятся более подверженными воздействию болезней и вредителей, отмирает до 50 процентов их корневой системы, главным образом мелкие корни, питающие дерево. В ФРГ кислотными дождями уже погублена почти треть всех елей. В таких лесистых районах, как Бавария и Баден, пострадало до половины лесных угодий.
Ускоренная коррозия металлов под воздействием кислотных осадков, как отмечает американская печать, приводит к гибели самолетов и мостов в США. Серьезной проблемой, как известно, стало сохранение античных памятников в Греции и Италии. Все это в большой степени из-за кислотных осадков.
Борьбу с кислотными дождями печать Швеции и Норвегии считает "самой крупной проблемой защиты окружающей среды".
Почему дожди становятся кислотными? Причина в постоянно возрастающем в ряде стран загрязнении воздуха, главным образом за счет сжигания ископаемого топлива и выделения при этом кислотообразующих газов сернистого ангидрида и окислов азота.
Эти загрязнители надолго остаются в атмосфере и переносятся на большие расстояния, на сотни, а иногда и тысячи километров.