В рычаге первого типа (рисунок 4) точка опоры расположена между плечами силы и сопротивления. Это именно тот рычаг, который встречается в текстах Архимеда. Примерами рычага первого типа могут служить весы, качели, клещи. В рычаге второго типа (рисунок 5) точка сопротивления находится между точкой приложения силы и точкой опоры. В качестве примеров такого рычага можно привести тачку, щипцы для орехов или открывалку для бутылок.
В рычаге третьего типа (рисунок 6) точка приложения силы находится между точкой сопротивления и точкой опоры. Примеры: степлер, антистеплер и щипчики для завивки ресниц.
РИС. 3
РИС. 4
РИС. 5
РИС. 6
Трактат «О равновесии плоских фигур» выделяется из числа других математических сочинений той эпохи: в нем нет определений. Отсюда возникла гипотеза, что трактат представляет собой краткое резюме некоторого очень важного труда. В том виде, в каком он дошел до нас, он состоит из двух книг.
Первая книга начинается семью постулатами (некоторые авторы считают, что это аксиомы) и продолжается пятью утверждениями, в которых в скрытом виде используется принцип равновесия равноплечих весов, чтобы продемонстрировать различные положения о равновесии тел. Последние утверждения касаются центра тяжести треугольника, параллелограмма и трапеции.
Во второй книге в десяти утверждениях рассматривается равновесие сегмента параболы. Вторая книга тесно связана с трактатом о квадратуре параболы.
В VIII книге «Математического собрания» Папп рассказывает об Архимеде и о рычаге. По утверждению автора Архимед произнес следующую фразу: «Дайте мне точку опоры, и я переверну Землю». С помощью несложных вычислений мы увидим, что это невозможно, и странно, если Архимед допустил такую ошибку. Предположим, что для нашего предприятия мы используем рычаг первого типа, а Земля будет располагаться в 1 м от точки опоры. Сразу отметим, что у Земли нет веса, ведь она находится в космическом пространстве и не опирается ни на какую планету или иное космическое тело. Но предположим, к примеру, что мы поместили Землю на суперрычаг, который опирается на суперпланету. В случае если земля представляет собой материальную точку, отстоящую от точки опоры на 1 м, на каком расстоянии должен находиться Архимед, чтобы приложить силу к другому плечу рычага? Так как масса Земли примерно равна 6 • 1024 кг и с учетом предположения, что Архимед прикладывает усилие, равное 60 кг, расстояние от точки опоры должно быть следующим:
P • Bp=R • Br
Bp = 1 м • (6 • 1024 кг)/60 кг = 1023 м.
Если вы не привыкли к математическим формулам, этот результат может вас и не впечатлить, но подстановка привычных единиц длины показывает, что речь идет о 10 млн световых лет (1016)! Возраст нашей Вселенной около 13700 млн лет (1,37х1010). Если мы будем считать Вселенную сферической, то от одного ее конца до другого получится 27 400 млн световых лет. Выходит, что всего 2740 таких рычагов покроют расстояние, равное диаметру Вселенной! Кроме того, как мы увидим, сам Архимед представлял Вселенную куда более маленькой, поэтому особенно странно, что он допустил такую ошибку в расчетах. Если он и правда произнес что-нибудь подобное, то, очевидно, только в метафорическом смысле, чтобы показать, насколько может увеличить силу рычаг.
Галилей схематичным рисунком проиллюстрировал задачу с короной. Такую схему он использовал в статье «Маленькие весы».
В 1586 году Галилео Галилей (1564-1642) написал очень короткую статью под названием «Маленькие весы», в которой проанализировал рассказ Витрувия о короне тирана Гиерона. Будучи большим знатоком трудов Архимеда и его научного наследия, Галилей довольно скептически отнесся к способу, которым, по представлениям римского архитектора, была решена эта задача. В качестве своего варианта он выдвинул идею гидростатических весов и в общих чертах развил ее меньше чем на пяти страницах, используя схему, показанную на рисунке. В статье Галилей объясняет, что нет причин подозревать Архимеда в проведении такого примитивного с научной точки зрения эксперимента, ведь в его распоряжении были способы гораздо более тонкие, чем просто перелившаяся через край вода. Далее он говорит, что его выкладки основаны на идеях самого Архимеда, содержащихся в трактатах о плавающих телах и о равновесии, а также упоминает об инструменте, которым пользовался Архимед, — гидростатических весах, хотя в наши дни изобретение этих весов часто приписывается самому Галилею. В данной работе он обращает внимание на то, как сложно на глаз различить столь малую разницу в уровнях воды. Тем самым Галилей провел биографическую реконструкцию, которую можно назвать безупречной.
Весы Мора-Вестфаля — это неравноплечие весы, используемые для определения плотности жидкостей. Научный принцип, на котором они основываются, учитывая, что это те же самые гидростатические весы,— это закон Архимеда. Они были изобретены немецким фармацевтом Карлом Фридрихом Мором (1806-1879).
Короткое плечо несет противовес, а с длинного свисает поплавок, и в него набирается жидкость, чью плотность предстоит измерить относительно плотности жидкости, в которую поплавок погружается.
Надо заметить, что он глубоко изучил научные труды Архимеда и всегда выказывал глубочайшее уважение к его методу работы и достижениям. Галилей цитирует Архимеда в своих книгах, например в «Диалоге о двух новых науках», «Пробирных дел мастере» и «Маленьких весах», а кроме того, упоминает его во многих письмах. Исследование движения тел, которым занимался Галилей, основано как раз на гидростатике Архимеда. Так, итальянский ученый представил себе движение в среде, которая оказывала все меньше сопротивления движущемуся телу. В итоге он пришел к своим выводам и сформулировал знаменитые уравнения движения в отсутствии воздуха, хорошо понимая, что в его время нельзя было в точности доказать их истинность из-за сопротивления реального воздуха при падении тела. Уравнения Галилея о движении описывают положение тела и его скорость в вакууме и могут быть с большой точностью применены в гравитационном поле: например, при сбрасывании тела с некоторой высоты. И все-таки воздух создает сопротивление падению, а это значит, что в реальных земных условиях они неверны. В 1971 году астронавт Дэвид Скотт уронил перо и молоток на поверхность Луны, чтобы убедиться, что они достигнут поверхности одновременно, учитывая отсутствие там атмосферы, а следовательно, и сопротивления воздуха. Таким образом уравнения Галилея были доказаны экспериментально. «Это показывает, что идеи господина Галилея верны»,— заметил Скотт после окончания знаменитого опыта. Его эксперимент стал жестом уважения к итальянскому ученому и, опосредованно, к его учителю — Архимеду.
Исчисление песчинок
Единственной работой Архимеда, которую можно назвать научно-популярной, является книга «Исчисление песчинок» (иногда ее называют также по-гречески — «Псаммит»), Открывается этот трактат посвящением Гелону Сиракузскому, сыну Гиерона II. Осознавая трудности, способные возникнуть у адресата с чтением научной книги, Архимед ободряет его словами: «Но я постараюсь объяснить тебе все с помощью геометрических построений, которые ты можешь понять...». После же долгих операций с гигантскими числами Архимед заканчивает изложение, вспомнив о людях, не слишком знакомых с математикой, и в заключение вновь обращается к Гелону: «Надеюсь, что и ты понял это все». Некоторые специалисты считают, что данная работа не слишком интересовала ни людей того времени, ни представителей последующих эпох, к тому же она была написана на сиракузском диалекте. Несмотря на это, само существование такой книги говорит о том, что Архимед был близко знаком с реальной жизнью, интересовался популяризацией науки и распространением знаний. В трактате он задается вопросом, сколькими песчинками можно было бы заполнить Сиракузы — бесконечно ли их количество? В тексте говорится, что нет. Затем ученый высчитывает, сколько песчинок бы вместила Сицилия, сколько понадобилось бы для наполнения всех гор Земли... И так вплоть до числа песчинок, необходимых для заполнения Вселенной. Архимед хочет показать Гелону, что даже их число не бесконечно.