Выбрать главу

Параболоид (рисунок 14) — это трехмерная фигура, образованная вращением параболы вокруг своей оси; гиперболоид (рисунок 15) — трехмерная фигура, образованная вращением вокруг своей оси гиперболы; а эллипсоид (рисунок 16) — трехмерная фигура, которую образует вращающийся вокруг своей оси эллипс.

Иллюстрация утверждения 19 из трактата «О коноидах и сфероидах». Здесь можно видеть, как вписывается в параболоид и описывается вокруг него множество цилиндров одинаковой высоты.

Первые 20 утверждений носят вспомогательный характер. Утверждения 21-32 представляют собой самую важную часть трактата. В трактате «О коноидах и сфероидах» даются начала интегрального исчисления. Вводятся базовые принципы вычисления объемов криволинейных фигур вращения. Тем не менее до самого понятия интегрирования дело не дошло, потому что еще не была сформулирована концепция предела. Таким образом, основная идея текста состоит в приведении фигур вращения ко все более маленьким цилиндрам, как можно полнее вписывающимся в их объем (исчерпывание) или как можно ближе «облегающим» их снаружи (сжатие). Архимедов метод исчерпывания предстает здесь во всем своем блеске. Ученому нужно показать, что он может эффективно ограничить параболоид изнутри и снаружи. Это он и делает в утверждении 19: «Можно вписать в параболоид и описать вокруг него две фигуры, состоящие из цилиндров одинаковой высоты, так, чтобы описанная фигура превышала по объему вписанную на величину, меньшую любой заранее заданной». Это значит, что параболоид вписывается в «стопку» цилиндров-дисков» одинаковой толщины (узкие уплощенные цилиндры, ширина которых больше высоты, как у таблеток). И еще одна «стопка» цилиндров той же высоты вписывается в параболоид изнутри. Таким образом, объем параболоида будет больше общего объема вписанных в него цилиндров и меньше объема описанных. Как показано на рисунке, чем больше число таких «дисков» (при уменьшении их высоты), тем более приближается их общий объем к искомой величине. Принцип тут весьма похож на тот, что использовался при решении задачи квадратуры круга.

Сапожный нож и солонка

Трактат, известный как «Книга лемм», отличается от других трудов Архимеда одной важной особенностью: у нас нет его греческого текста. Он дошел до наших дней только благодаря переводу на арабский язык, который сделал астроном, математик и переводчик IX века Сабит ибн Курра. Таким образом, у нас есть единственное свидетельство того, что это действительно труд Архимеда, — факт, который вызывает некоторые сомнения в его авторстве. Данная книга считается учебником из-за элементарности или вторичности многих содержащихся в ней утверждений. В частности, утверждение 7 гласит, что площадь круга, описанного вокруг квадрата, в два раза больше площади круга, вписанного в него. Текст состоит из 15 утверждений, причем в нем упоминается и сам Архимед: например, в утверждении 4, где представлена геометрическая фигура арбелос, что по-гречески означает «сапожный нож», так как она формой напоминает этот инструмент. Арбелос представляет собой область плоскости, ограниченную тремя касающимися друг друга половинами окружностей. На приведенном здесь рисунке арбелос соответствует затемненной части. У этой фигуры есть некоторые любопытные свойства, которые можно было бы включить в начальный курс геометрии. Возможно, самая интересная из них — это так называемые «круги-близнецы Архимеда» (см. рисунок на следующей странице): из точки С достраивается перпендикуляр к прямой АВ до пересечения с окружностью наибольшего диаметра. Данный перпендикуляр делит арбелос на две фигуры. Затем в каждую из этих получившихся фигур вписываются окружности С1 и С2 так, чтобы они касались с двух сторон перпендикуляра и каждая из них касалась большой и малой окружности.

В утверждении 5 говорится, что площади этих кругов будут равны (SС1=SС2), независимо от местоположения точки С, отчего они и называются кругами-близнецами Архимеда. Существуют и другие круги, связанные с арбелосом, они тоже носят личные имена — круг Аполлония, круг Паппа и круг Банкофа.

Еще одна фигура, представленная в «Книге лемм», называется салинон, что согласно интерпретации историка математики Томаса Хита означает «солонка». В утверждении 14 даются указания, как построить эту фигуру, и вновь встречается имя Архимеда. То, что он неоднократно упоминается в данном трактате, говорит об учебном характере книги. Инструкции же, которые даются в ней для постройки салинона (рисунок 17 на стр. 116), таковы.

— Проводится отрезок прямой АВ, и в его середине отмечается точка О.

— Строится полуокружность, диаметр которой равен отрезку АВ.

— На отрезке АВ строятся еще две полуокружности равного диаметра (меньшего, чем половина отрезка) так, чтобы они касались первой полуокружности в точках А и В.

— Получаются полуокружности с диаметрами AD и ЕВ и центрами соответственно в точках G и H.

— Строится полуокружность с диаметром DE в сторону, противоположную двум предыдущим, замыкая таким образом фигуру.

— Фигура, замкнутая построенной линией из четырех полуокружностей, и есть салинон.

Место предполагаемой могилы Архимеда в Сиракузах на Сицилии.

В 1965 году вычисление наименьшего из возможных решений задачи о быках заняло у компьютера IBM 7040 7 часов 49 минут (фото: Columbiana photo archive).

В «Книге лемм» Архимед представляет геометрическую фигуру «арбелос» (сапожный нож), названную так из-за сходства с соответствующим инструментом (фото: Thomas Schoch).

РИС. 17

РИС. 18

Интересно отметить, что при представлении салинона Архимед в том же утверждении описывает следующее его свойство.

— Проводится прямая, перпендикулярная АВ и проходящая через точку О.

— Эта прямая пересекает границы салинона в точках С и F.

— Берется точка Р, представляющая собой середину отрезка CF, и строится окружность с центром Р и диаметром CF.

— Можно доказать, что площадь салинона равна площади круга с диаметром CF и центром Р (рисунок 18).

Трехмерные архимедовы фигуры

К сожалению, до нас не дошел трактат «О правильных многогранниках», в котором, по- видимому, Архимед подробно описывал трехмерные тела, носящие в наше время его имя. Однако мы знаем о них благодаря александрийскому математику Паппу. В книге V своего «Математического собрания» он пишет:

«Хотя можно придумать множество многогранников самых разных видов, более всего заслужили внимание многогранники, которые имеют правильную форму. Таковы не только фигуры, найденные великим Платоном, то есть тетраэдр, куб, октаэдр, додекаэдр и пятый — икосаэдр, но и 13 многогранников, открытых Архимедом, сложенные из правильных, но не одинаковых многоугольников с равными сторонами и равными углами».

РИС. 19

Архимедовы тела, примеры которых приводятся на рисунке 19, — это 13 выпуклых многогранников, которые по большей части получаются из Платоновых тел «срезанием углов»: усеченный куб, усеченный тетраэдр, малый ромбокубооктаэдр, большой ромбокубооктаэдр, усеченный октаэдр, усеченный додекаэдр, усеченный икосаэдр, плосконосый куб, кубооктаэдр, малый ромбоикосододекаэдр, большой ромбоикосододекаэдр, икосододэкаэдр и плосконосый додекаэдр.