Выбрать главу

Otto Piene: Electronic Light Ballet. 1969. Hi-Band Color VTR. 15 ips. 5 min. Lighter-than-air space contrasted with vivid videospace in Piene's usual elegant fashion.

The ascension was staged at night in the parking lot of WGBH, which was illuminated by colored floodlights. Over this slow, buoyant, ethereal, surrealistic scene Piene superimposed a geometrical grid of regularly-spaced colored dots similar in effect to the multiple-bulb brilliance of his light sculptures. In exquisite counterpoint to the balloon scene the dots flared brightly, became liquid, developed spermlike tails, and finally dripped oozing globlets of color across the screen. The technique was deceptively simple: de-beaming the separate guns of the color camera with a strong hot light source shining through multiply-perforated stencils. Both the stencils and the camera were moved, causing a sperm-shaped burn-in of intense colors. If a dot appeared originally as yellow and was moved, the de-beamed "tail" would remain yellow but the "head" of the comet-shaped light would suddenly turn red or green. The effect, as in all of Piene's work, was quietly elegant, revealing the potentials of the medium in the hands of a true artist.

James Seawright: Capriccio for TV

James Seawright, then technical supervisor of the Electronic Music Center of Columbia and Princeton Universities, was best known for kinetic/electronic sculptures. In fact, Capriccio for TV (see color plates) was Seawright's first experience with video as a creative medium. Whereas Piene's effort was a ballet of light and air, Seawright processed an actual ballet pas de deux through the videotronic medium to produce an inspired dance of form and color.

In contrast to the elaborate yet unimaginative convolutions of the CBS "Limbo" program, Seawright's piece was simple and effective. He televised two dancers— his wife Mimi Garrard and Virginia Laidlaw— against a score of electronic music by Bulent Arel. In the first two "movements" the dancers were shot in negative color and were superimposed over reversed images of themselves, producing a Rorschach-like mirror effect similar to bas-relief "flopping" in the cinema. In the concluding section Seawright televised the scene with three cameras that recorded only one of the three basic colors each onto three separate tapes. In addition, one camera was on tape delay so that a second dimension of abstraction was added. It was therefore possible to see two images of the same figure performing the same action at different stages in different colors, whereas the other figure was equally abstract in other colors. The image took on a ghostly quality, suggesting colored X rays or dream sequences in the mind's eye. Space, time, form, and color were brought into concert in an unforgettable video experience.

Nam June Paik: Cathode Karma

"Cybernetics, the art of pure relations, has its origins in karma. The Buddhists say karma is sangsara, relationship is metempsychosis. Cybernated art is important, but art for cybernated life is more important, and the latter need not be cybernated."

"My experimental television is not always interesting," admits Nam June Paik, "but not always uninteresting: like nature, which is beautiful not because it changes beautifully, but simply because it changes." Paik is the embodiment of East and West, design scientist of the electron gun, pioneer ecologist of the videosphere. He is to television what John Whitney is to the computer; he does with TV sets what David Tudor does with pianos. "Television has been attacking us all our lives," he says, "now we can attack it back."

This Korean-born genius has been attacking it back longer than anyone, and in his own inimitable fashion. The bloody head of an ox was hung over the door to his first video exhibit in Wuppertal, Germany, in 1963, as a shock device "to get the audience into a oneness of consciousness so they could perceive more"— as in Zen, the master would strike the pupil. Although he never really harmed anyone, Paik was for several years a cultural terrorist, a kind of deus ex machina of the Orient, who left in his wake a series of demolished pianos, clipped neckties, bizarre junkyard robots, and scandalized audiences from Holland to Iceland. John Cage once remarked that "Paik's work, performances, and daily doings never cease by turn to amaze, delight, shock, and sometimes terrify me."

In recent years Paik has abandoned his mixed-media environmental Happenings to concentrate exclusively on television as an aesthetic and communicative instrument. Independently, in collaboration with scientists, and in a special research and development program with the State University of New York, he has explored nearly every facet of the medium, paving the way for a new generation of video artists. His work has followed four simultaneous directions: synaesthetic videotapes; videotronic distortions of the received signal; closed-circuit teledynamic environments; and sculptural pieces, usually of a satirical nature.

There are approximately four million individual phosphor trace-points on the face of a 21-inch television screen at any given moment. Paik's canvas is the electromagnetic field that controls the distribution of these trace-points in horizontal and vertical polar coordinates at 525 lines per second. By interfering, warping, and otherwise controlling the cathode's magnetic field, he controls the four million glowing traces. "It creates the possibility of electron-drawing," he says. "It's better than drawing on a CRT with a light pen because it's multicolored and provides interaction with the air program." (See color plates.)

Although he is continually developing new parameters of control and interaction with television, most of Paik's basic techniques were developed in the period 1963-64 in collaboration with Hideo Uchida, president of Uchida Radio Research Institute in Tokyo, and with Shuya Abe, an electronics engineer who, according to Paik, "knows that science is more beauty than logic." Paik has outlined three general areas of variability with these techniques. ("Indeterminism and variability are underdeveloped parameters in the optical arts," he says, "though they have been the central problem in music for the last two decades. Conversely, the parameter of sex has been underdeveloped in music as opposed to literature and the visual arts.")

The first level of variability is the live transmission of the normal broadcast program, "which is the most variable optical and semantical event of our times... the beauty of distorted Nixon is different from the beauty of distorted football hero, or not always pretty but always stupid female announcer." Paik estimates that he can create at least five hundred different variations from one normal broadcast program.

The second level of variability involves the unique characteristics of circuitry in each individual television receiver. Paik has resurrected several dozen discarded sets from junkyards and brought them back to wilder life than ever before in their previous circuits. "I am proud to say that thirteen sets suffer thirteen different varieties of distortion," Paik once announced, and then added: "1957 model RCA sets are the best." By altering the circuitry of his receivers with resistors, interceptors, oscillators, grids, etc., Paik creates "prepared televisions" that are equivalent in concept to David Tudor's prepared pianos.

The third level of variability is the manipulation of these prepared TVs with wave-form generators, amplifiers, and tape recorders to produce various random, semirandom, or completely controlled effects, examples of which are: (a) the picture is changeable in three ways using hand switches: upside-down, right-left, positive-negative; (b) the picture can become smaller or larger in vertical or horizontal dimensions separately, according to the amplitude of the tape recorder; (c) the horizontal and vertical electron-beam deflection of normal TV is changed into a spiral deflection using a yoke oscillator-amplifier, causing an average rectangular picture to become fanlike; (d) the picture can be "dissipated" by a strong demagnetizer whose location and rhythm contribute variety; (e) amplitude levels from radios or tape recorders can be made to intercept a relay signal at the grid of the output tube so that the picture is visible only when the amplitude changes; (f) asymmetrical sparks flash across the screen when a relay is intercepted at the AC 110-volt input and fed by a 25-watt amplifier without rectifier; (g) a 10-megohm resistor is placed at the vertical grid of the output tube and interacts with a sine wave to modulate the picture; (h) wave forms from a tape recorder are fed to the horizontal grid of the output tube, causing the horizontal lines to be warped according to the frequency and amplitude.