The results are, according to Siegel, "electronic Rorschach patterns in the context of a metaphysical statement." The statement is the tape he prepared for processing through the synthesizer, and this tape itself was recorded through special equipment that the young artist, characteristically, calls his "magic box." This device, more aptly described as a "video effects generator," processes images from a portable TV camera during the actual taping: the images are transformed during the process of moving from the camera to the videotape recorder.
One segment of Psychedelevision involves variations on a portrait of Albert Einstein as recorded through the effects generator and tinted through the color synthesizer. Einstein's face is seen in infinitely-repeated multiples, then implodes, bursting into a shower of fiery sparks, reforms again from the fragments only to melt into Daliesque puddles.
Because of the peculiar nature of the color synthesizer, the colors of Psychedelevision are unlike most other video hues: now organic in appearance, now like shimmering metal or mercury, glowing with an unearthly light, trembling in fierce brilliance, like the colors on the inside of the retina. But in the best kinetic art it's form as well as color that determines the kinaesthetic effectiveness of the piece. Siegel's forms are virtually indescribable: great waves of curling clouds sweep under and over the viewer in turbulent fury, quite reminiscent of the Stargate Corridor in 2001. Random fire bursts of phosphorescent crimson flash across this eerie landscape. Suddenly the forms become bilaterally symmetrical, with shapes and colors streaming wildly from the center of the screen.
"Psychedelevision is my attempt at video mind expansion," Siegel explained. "A new science must be created which can reach the inner core of human beings. One of the most important tools of this new science will be television. I've been thinking of a television system which would take impulses from a human being through electrodes in a positive feedback loop: the person would be able to watch his own neurological reactions to the video patterns and video information generators activated by himself. The American Dream no longer is evolving. It's in a state of decay. Television must be liberated."
Videographic Cinema
"We use video technology in filmmaking," explains Loren Sears, "exclusively for its graphic potentials. You can't really 'represent' or carry over satisfactorily into film the electronic viewing experience of watching television. You can carry the graphics over, but not the actual electronic experience." In the best videographic cinema, which we are about to discuss, the artist is at least able to approximate or suggest the luminescent atomic world of video imagery. As Sears indicates, however, the motivation is more toward the graphic characteristics exclusive to television, which simply cannot be duplicated by cinema alone.
"Metamorphosis is the main thing you can do with video that you can't do with film," says Scott Bartlett. "But video plus computers could do it even better." As it turns out, the optical effects of many Hollywood films have for several years been done on high-resolution videotape since that medium is less expensive to edit than film. But the fantastic capabilities inherent in videotape are not used; it is employed only as an imitation of cinema.
In the work discussed here, film and video technologies have been synthesized together, often through many generations of proc essing, to achieve graphic character unique in the world of film. Since one automatically thinks of any movie image as having been photographed by a camera, videographic films are quite startling on first encounter. Nothing in one's experience with movies can explain how such visions were captured on film— and indeed they were not: videographic cinema might succinctly be described as a film of videotaped film. "Color is the biggest problem," Bartlett admits. "It's very difficult to control. But more stable circuits are being developed all the time. The possible range of video color is as great as the range of color in any other medium. And because you're right there watching it happen you can deal with the psychological nuances of color and form."
Scott Bartlett: Tribal Television
"There's a pattern in my film work that could be the pattern of a hundred thousand movies. It simply is repeat and purify, repeat and synthesize, abstract, abstract, abstract."
With his first film, Metanomen, made at San Francisco State College in 1966, Scott Bartlett went practically as far as possible within the structural limitations of black-and-white film and conventional cinema technology. Winner of the 1966 National Student Film Competition, Metanomen was a stunning kinaesthetic experience in which form and content merged in synaesthetic alloy. It became immediately obvious that with more elegant structural technologies Bartlett could raise this form/content metamorphosis to higher levels of graphic integrity. Like the best synaesthetic cinema Bartlett's films are not about an experience: they are the experience. Here we find kinetic empathy soaring to poetic heights.
Early in 1967, as Bartlett recalls, "television sort of found me. I had been superficially exposed to it, as my friend Tom DeWitt was in the TV department at school. That summer another friend, Michael MacNamee of Washington State University, said he could set up a TV studio situation for me at a station in Sacramento. I didn't know what would come of it, but OFFON came of it. And now Moon has come of that. Going into television doesn't mean I've abandoned cinema. It's a matter of expanding my technical vocabulary. I'm still doing Metanomen things, and I'm still doing OFFON things. But it's all adding up; I'm creating a new vocabulary."
Winner of many international awards, OFFON (see color plates) was the first videographic film whose existence was equally the result of cinema and video disciplines. Like all true videographic cinema, OFFON is not filmed TV, in the way that most movies are filmed theatre. Rather, it's a metamorphosis of technologies. "That's becoming a kind of aesthetic common denominator," says Bartlett. "Marrying techniques so the techniques don't show up separately from the whole. It's crossbreeding information. That's what a computer does, too. Having several aesthetics force each other into their separate molds and then sort of seeing what happens."
What happens in OFFON is extraordinary. The basic source of video information was in the form of twenty film loops that Bartlett and DeWitt had culled from more than two-hundred loops they had made for a multiprojection light concert called Timecycle, described as a "two-hour moviemural." The iconographic character of the Timecycle imagery was clean and simple since it was intended for use in addition to other image projections. These loops were superimposed over one another to a depth of as many as eleven print generations for one strip of film, separating images from background, positives from negatives, adding colors to separate strips, and then recombining them optically.
Black-and-white loops were fed through a color film chain in the television control room, adding videotronic phosphor-texture to the cinematic graphics. Simultaneously, other loops and portions of Glen McKay's light show were rear-projected onto a screen on the studio floor, which was televised as a second video source. Both video sources were routed into one monitor: two images riding between two incoming channels, each pattern competing for exhibition on the monitor, generating a cross-circuited electronic feedback loop ". . . to the point where white information in competition with itself breaks down into colors: spectral breakdown." A second TV camera televised the monitor, feeding the signal to a videotape recorder. This master tape was again processed through the switching/mixing system. Instead of being recorded back onto film in the usual kinescope process, a special camera was set up in front of a monitor that filmed at the video rate of 30 fps instead of the movie rate of 24 fps.