Даже несмотря на то, что поддерживать низкие температуры при работе с космическими телескопами проще, использовать их для охоты за инфракрасным излучением все равно можно только при наличии дополнительного охлаждения. Обычно нужная температура достигается с помощью жидкого гелия, который медленно испаряется, поглощая окружающее его тепло и поддерживая температуру телескопа на уровне –270 °C. Когда гелий полностью испаряется, телескоп слегка нагревается до умеренно мягких –244 °C.
Как раз такими телескопами, чья задача заключается в поиске дисков вокруг молодых звезд, были телескопы «Инфракрасная космическая обсерватория» (Infrared Space Observatory) и космический телескоп «Спитцер» (Spitzer Space Telescope). Первый был запущен в 1995 г. Европейским космическим агентством и продолжал работать до 1998 г., пока не закончился гелиевый хладагент. «Спитцер» — одна из «Больших обсерваторий» NASA. В эту знаменитую группу спутников также входит космический телескоп «Хаббл». «Спитцер» был запущен в 2003 г., хладагент на нем был выработан в мае 2009-го, но телескоп продолжил работу в режиме ограниченной нагрузки при более высокой температуре. Результаты работы этих телескопов не оставляли сомнений: все звезды младше миллиона лет окружены пылевыми дисками. Если этого набора условий достаточно для формирования планет, то вокруг каждой новой звезды действительно могут образовываться новые миры.
Впрочем, проведенные исследования позволили сделать еще и другой вывод. Хотя у всех самых молодых звезд были диски, только 1% звезд старше 10 млн лет по-прежнему имели тот набор условий, который требуется для формирования планет. Единственное толкование: формирование планет происходит в рамках определенного периода времени.
Исчезновение протопланетного диска может объясняться несколькими причинами. Самое захватывающее объяснение: весь диск превращается в планеты, в результате чего образуется целый хоровод новых миров. К сожалению, наблюдения за нашей Солнечной системой и за известными нам эзкопланетными системами показывают, что общая конечная масса планет составляет лишь 1% от первоначальной массы диска, что заставляет задуматься о том, куда деваются остальные 99%.
Еще одно вероятное объяснение заключается в том, что под действием гравитационных сил диск притягивается к близлежащим звездам, отрываясь от своего солнца. Это процесс действительно может иметь место в некоторых случаях, но он не настолько широко распространен, чтобы им можно было объяснить полное исчезновение всех протопланетных дисков: обычно звезды находятся слишком далеко друг от друга. Поэтому за разрушением диска должны стоять факторы внутреннего порядка, то есть в процессе формирования звезды и дисковой системы последняя разрушает саму себя.
Отчасти в разрушении виновато трение внутри диска. Для наглядности можно представить себе диск в виде следующих друг за другом беговых дорожек вокруг звезды. Газ на внутренней дорожке выбивается вперед, опережая газ на соседней внешней дорожке. В результате трения между дорожками скорость газа на внутренней дорожке уменьшается, а значит, в противостоянии вращения и гравитационных сил протозвезды последние начинают одерживать верх. Увлекаемый вперед газом с внутренней дорожки, газ на внешней дорожке набирает скорость, но одновременно с этим замедляется под влиянием газа с дорожки, которая граничит с ним с другой стороны. По мере уменьшения влияния на диск вращения газ и находящаяся во взвешенном состоянии пыль падают по направлению к звезде.
Этот процесс падения вещества по спирали называют аккрецией. Безусловно, на него можно списать исчезновение определенной части диска. Однако, учитывая, что этот процесс протекает достаточно медленно, вряд ли его можно считать единственной причиной. На разрушение внешних частей дисков путем аккреции потребовалось бы несколько миллиардов лет. Но, как показывают наблюдения, все происходит намного быстрее — приблизительно за 10 млн лет. Еще больше усугубляет ситуацию то обстоятельство, что процесс частичного разрушения диска наблюдается исключительно редко. Это указывает на то, что фактическое время разрушения в 10 раз меньше, а сам процесс, скорее всего, протекает практически одновременно во всем диске. Последний вывод наиболее проблематичен, поскольку, чем ближе к звезде, тем быстрее протекает аккреция, а значит, диск поглощается изнутри. Для этого требуется вторая, более динамичная деструктивная сила. Ее источником выступает сама звезда.