Это решение было бы идеальным, если бы не газовый диск.
При движении по орбите вокруг молодого Солнца на газ и твердые частицы действуют разные силы. Для мельчайших частиц пыли меньше сантиметра размером эта разница не имеет значения. Крошечные частицы находятся во взвешенном состоянии в газе, который несет их с собой как ребенка в слинге, заставляя двигаться с одинаковой скоростью. По мере того как частицы пыли увеличиваются, превращаясь в более крупные твердые тела, они становятся все больше похожи на начинающих ходить детей, которых пока еще нужно держать за руку. Они по-прежнему движутся по орбите вокруг звезды, но их движение уже не так тесно связано с окружающим газом. И тогда возникает проблема, поскольку частицы — твердые, а газ — текучий, а текучая субстанция подвержена давлению.
В отсутствие газового диска на твердые тела действуют сила притяжения Солнца и обратная поддерживающая сила, обусловленная их собственным вращением. Возникающее в результате этого взаимодействия движение называют кеплеровским в честь Иоганна Кеплера, который описал соответствующую орбиту в своих законах движения планет. При этом на газ оказывают воздействие не только эти две силы, но еще и сила давления. Она возникает в связи с тем, что в результате аккреции протопланетного материала на Солнце плотность диска увеличивается к центру. На твердых телах это никак не сказывается. Но этот градиент создает дополнительную центробежную силу, под действием которой газ замедляется на 0,5% относительно скорости кеплеровского движения. В результате твердые тела, подобно велосипедисту, испытывают сопротивление встречного ветра, создаваемого более медленным газом, который толкает их в обратном направлении. И точно так же, как велосипедист, который борется с сильным встречным ветром, твердые тела начинают терять скорость.
С падением скорости твердых тел их вращения уже недостаточно, чтобы уравновешивать силу притяжения Солнца, и они начинают нисходящее движение по спирали. Быстрее всего это происходит с состоящими из пыли структурами размером около одного метра. Чтобы упасть на звезду с той точки, в которой находится Земля, этим образованиям потребуется несколько сотен лет. Единственный способ исключить такое столкновение — стать больше.
Всякий, кто попадал в «болтанку» во время авиаполета, знает, что небольшой самолет больше подвержен турбулентности, чем внушительный Boeing 747. Дело в том, что лобовое сопротивление окружающих воздушных потоков намного сильнее, если масса объекта невелика по сравнению с площадью его поверхности. Поэтому, когда пыль собирается в объекты километрового размера, для нее уже не является помехой сопротивление, создаваемое потоком газа. К сожалению, тех сотен лет, за которые метровая глыба долетает до Солнца и сгорает в нем, недостаточно для того, чтобы, сталкиваясь с другими телами, она превратилась в неподверженную встречному сопротивлению километровую скалу. Это называют проблемой метрового барьера. Но если планеты все же сформировались, значит что-то остановило их падение на звезду.
Во время гонок велосипедисты, чтобы снизить изматывающее сопротивление встречного потока воздуха, стараются держаться вместе, формируя так называемый пелотон. Велосипедисту-одиночке приходится бороться с ветром, а при движении в группе между ним и ветром появляется преграда, и он затрачивает намного меньше энергии. Сменяя друг друга, участники поочередно едут во главе пелотона. Часто команда использует эту тактику, чтобы помочь своему лидеру, который обычно едет последним, сохранить силы для рывка на финишном отрезке дистанции.
Протопланетный вариант велосипедного пелотона лежит в основе идеи, которую называют потоковой неустойчивостью. Ее суть в том, что твердые глыбы, обреченные двигаться по направлению к Солнцу, можно остановить, если исключить сопротивление газа. По аналогии с пелотоном, для достижения нужного эффекта необходимо, чтобы в одном месте собралось достаточное количество твердых тел.
Очевидно, что при движении по спирали вниз по диску крупные объекты не образуют однородную среду. Подталкиваемые газом, они собираются вместе, концентрируясь в определенных точках маршрута. Такие скопления превращаются в своего рода пелотоны, обеспечивая уменьшение встречного сопротивления газа в окружающем их пространстве. Когда новые глыбы затягиваются внутрь диска с краев, они оказываются в пелотоне и постепенно замедляются по мере снижения сопротивления газового потока. При этом количество участников пелотона увеличивается, а значит, влияние встречного потока продолжает уменьшаться. Разрастающемуся пелотону все легче вбирать в себя прилетающие глыбы, и процесс набирает обороты.