Выбрать главу

Three of us shared this tiny space, so there was no privacy. On an earlier moon flight, one crewmember had tried to hold it in for six days and got pretty sick. It wasn’t pleasant to have someone float inches from your face with a bag stuck to his butt. That fragrant bar of soap was a welcome antidote. But we were grungy explorers and we didn’t let it bother us or give it a second thought.

Back to business. Mission control asked Dave and Jim to carefully vacuum the surfaces inside Falcon where glass may have stuck, and then leave the vacuum cleaner running in there to catch any additional floating shards.

Before that, we carried out an unusual experiment. Each of us had seen bright flashes when our eyes were closed, and so had crews before us. Scientists believed these flashes were cosmic rays whizzing through space and passing through our heads. We placed the shades in the windows, put on eyeshades, and reported how many flashes we saw in an hour—and there were many. The effect was like flashbulbs going off across a crowded sports stadium as these high-energy particles zapped through our skulls. We reported the many directions the streaks of light seemed to be coming from. Were they striking our retinas or hitting a deep part of our brain, activating our visual senses there? We didn’t know.

We were close to the end of our day’s tasks when Dave announced to Houston that we had another problem. Down in the equipment bay, Jim spotted the outlet for our water supply leaking right around the cap. In weightlessness, a wobbling ball of fluid grew around the leak, while water also slowly crept across the surrounding surfaces. This was not good. Had a pipe broken? Would we be able to stop the leak?

Karl Henize asked a question from the ground. “Can you give us an estimate of how many drips per second?”

Jeez, Karl, I thought, we’re in space. Water doesn’t drip in weightlessness. But we worked through this brief confusion. NASA engineers and contractors around the country began to look for a solution.

“It’s accumulating at a pretty good rate,” Jim informed Karl with a slight note of alarm. If this water floated into our electrical systems, there would be hell to pay. Following instructions from the ground, we begin to turn off pressure regulators and tank inlets, hoping to stop the leak. We also began to soak up the growing water sphere with towels.

Within fifteen minutes, Houston radioed a solution. I later heard they tracked down a technician who was on his way home, and he knew exactly what to do. We pulled out the tool kit, tightened the fitting, and the leak stopped. If it hadn’t, we would not have landed on the moon. It made me think, as I floated there, why it was important to send people into space. A robotic spacecraft couldn’t fix itself.

“Nice to have the quick response … we about had a small flood up here,” Dave radioed with relief. It was teamwork at its finest. Mission control later told us that Captain Cook’s Endeavour had also sprung a leak on one of its voyages, which made us feel even more like grizzled explorers. “You guys didn’t strike a coral reef there, did you?” they joked with us. “Sounds to me like the Endeavour has a few plumbers aboard.”

The plumbing work had made me thirsty. Surrounded by wet towels, I decided to make a hot coffee. I had three kinds made up for me on the flight: black, black with sugar, and black with cream and sugar. If I couldn’t have a slug of the Oso Negro vodka I’d hoped to sneak aboard, a jolt of black coffee would be the next best thing.

Instead of coffee, Jim and Dave had loaded up their drink menus with hot chocolate. I’d warned against it. Sweet and sticky, it was sickly, nasty stuff for a spaceflight. Interestingly enough, I hadn’t seen Dave or Jim drink much of it so far. And, looking at my meager coffee supply, I noticed the number of packages was going down awfully fast. I’d need to protect my supply before they drank it all.

Although there was no sense of it in the spacecraft, we’d slowed down from twenty-five thousand miles per hour when leaving Earth orbit to a relatively sluggish three thousand miles per hour. Earth continued to pull on us. But now the moon’s gravity tugged more strongly on us than Earth’s. As we fell toward the steadily growing moon, our speed began to pick up again.

We would reach the moon the next day. It was time to sleep. I felt so comfortable in space now that I didn’t bother with the sleeping bag. Instead I flattened out my couch, put a strap around me so I wouldn’t float into the instrument panel, and slept.

All too soon, it was morning. Time to put my spacesuit back on—just as a precaution. It was a lot easier putting it on in space. I simply let the suit drift in front of me and floated into it.

We prepared to jettison the door covering the SIM bay. Better to do it now, we reasoned, than in lunar orbit, in case it hit the large engine bell at the rear of the spacecraft. This operation was a first for the Apollo program, which is why we suited up. That door was a hunk of metal five feet wide and more than nine feet long, and we were going to release it with explosives.

After another quick course correction burn, we blew off the door. I felt a faint shudder through the spacecraft as the explosives fired and the panel slowly tumbled away. The detonation jolted a thruster valve closed, but we quickly reopened it from the control panel. My bay of prize experiments was now exposed to space, ready to whir into action when we reached lunar orbit.

“You’ll be interested to know that there’s a very thin crescent moon in front of us,” I told Houston. “It may be thin, but it’s big.”

The sunlit part of the moon had shrunk to a delicate sliver. And in the faint reflected light from the distant Earth, the rounded bulk of the shadowed side loomed at us as we approached. For the first time, I could see that the moon was truly three-dimensional. It was eerie.

Less than an hour before arrival we dropped into its shadow. Picking up speed, we fell toward the moon’s western edge as its dark mass grew in our windows. We turned the spacecraft so our main engine faced forward, ready to slow ourselves into lunar orbit. We’d make that engine burn behind the moon.

“Have a good burn,” Karl radioed as we prepared to lose our radio signal.

“We’ll see you on the other side,” Dave replied. Then we lost them.

We hurtled behind the moon for eight minutes, then lit our engine. It was a beautifully smooth and precise burn. For six long minutes we slowed down, gently pressed into our couches, curving our path so that we fell around the dark surface: not too close, not too far. “Looks like it’s running smooth … Holding steady,” I told Dave and Jim as I monitored the engine thrust. We were ready to intervene if the burn didn’t end at the correct moment. But it did. “Shutdown. Fantastic!” Dave announced. We were in lunar orbit.

Mission control, of course, had no idea that our burn had been successful. All they could do was wait for more than half an hour to pick up our signal as we rounded the moon’s eastern limb. If they acquired us early, that would mean our burn hadn’t been successful and we’d be hurled away from the moon, back toward Earth.

We curved around the moon’s far side, intensely studying our instruments. Then, out of the window, I saw what looked like a series of ghostly ocean waves coming toward me from the deep blackness. This was weird, and unexpected. What was I seeing?

The waves seemed to billow and grow as my confused mind tried to make sense of the glowing, shifting patterns. Then I slowly began to comprehend the sight. Sunlight was hitting the top of the tallest lunar mountains as we passed over them, and the peaks were separated by deep black shadows. As we continued to round the moon into sunlight, the shadows grew thinner, and I could begin to make out surface features.