Орексины играют важную роль в развитии наркотической зависимости и поведения, связанного с системой награды. Особенно важна роль орексинов в стремлении к получению наркотика, инициируемая внешними стимулами. Существуют функциональные нейронные связи, в которые вовлечена система орексинов. Данные связи опосредуют поведение, связанное с аддикцией (DeLecea L., 2012). Опыты на животных показали, что функция награды связана с орексиновыми нейронами в латеральном гипоталамусе.
Орексиновые нейроны реагируют на подкрепляющие стимулы, включая пищу, половое влечение и аддиктивные вещества (Шумилов Е. Г., и др., 2014; Лебедев А. А., и др., 2015; Cason A. M., et al., 2010; DiSebastiano A. M., et al., 2010; Harris G. C., et al., 2005; Sakurai T., et al., 1998). Блокирование OX1R-рецепторов препядствует возможности стимулов к восстановлению поведенческих реакций в отношении тяги к наркотикам или пище. Доказано, что орексин не только активирует нейроны-мишени, но также оказывает модуляторный эффект на глутаматергическую передачу (Шумилов Е. Г., и др., 2014; Baimel C., Borgland S. L., 2012).
Множество исследований показали важную роль орексина в отношении формирования тяги к наркотику на моделях аддикции у животных. Но точные механизмы этого воздействия пока не ясны. Это происходит вследствие комплексного вовлечения орексина в различные аспекты тяги к наркотику, такие как отвращение и мотивация потребления пищи, взаимодействие с процессами Павловского обусловливания и инструментального обусловливания (Шабанов П. Д., Лебедев А. А., 2012; Шабанов П. Д. и др., 2014).
Исследование системы орексина показало ее ключевую роль в фундаментальных и поведенческих процессах головного мозга. Сложно идентифицировать какую-либо другую систему, которая бы в такой же степени ассоциировалась с влиянием на поведение (Шабанов П. Д., Лебедев А. А., 2012; Шабанов П. Д. и др., 2014; Шумилов Е. Г. и др., 2014; GotterA. L., etal., 2012).
1.4. Системы грелина
В то время как грелин известен как гормон желудка, принимая участие в энергетическом балансе, инициации голода и насыщения, он также играет важную роль в аддиктивном поведении через активацию так называемой "холинергическо-дофаминергической цепочке награды". Эта цепочка содержит проекцию (воздействие) дофамина вентральной области покрышки (VTA) на прилежащее ядро вместе с холинергическим входом, возникающие в основном из латеродорзальной области покрышки. Влияние грелина на вентральную (VTA) или латеродорзальную (LDTg) область покрышки активирует "холинергическо-дофаминергическую" цепочку награды, предполагая, что грелин может увеличить побудительные ценности мотивированного поведения, такие как поиск раздражителя ("желание" или "побудительная мотивация"). Кроме того, с непосредственным введением грелина в желудочки головного мозга или в вентральную область покрышки(VTA) увеличивает потребление желаемых продуктов, а также алкоголя у мышей и крыс. Исследования на грызунах показывают положительный эффект антагонистов грелиновых рецепторов (GHS-R1A) в подавлении потребления желаемой пищи, алкоголя, кокаина и амфетамина (Suzanne L. Dickson et al., 2011).
Кроме того, изменения в GHS-R1A и про-грелиновых генах были связаны с высоким уровнем потребления алкоголя, курением и увеличением прироста массы людей с алкогольной зависимостью , также как при булимии и ожирении. Таким образом, система грелина учавствует в механизмах подкрепления, а агенты, которые прямо или косвенно подавляют эту систему, рассматриваются в качестве потенциальных лекарственных препаратов для подавления переедания, приводящего к ожирению и лечения наркотической зависимости (Suzanne L. Dickson et al., 2011).
Грелиновая система рассматривается как важная составляющая ЦНС для контроля за питанием (Wren et al., 2000) и энергетического баланса (Lell et al., 2001; Tschop et al., 2000). Рецепторы грелина GHS-R1A представлены в некоторых участках мозга, которые включают: гипоталамус, область покрышки, гиппокамп и ствол ГМ (Guan et al., 1997; Howard et al., 1996; Zigman et al., 2006). Интересно, что эти рецепторы имеют конституциональную активность даже при отсутствии грелиновых лигандов (Holst et al., 2003; Holst and Schwartz., 2004). Из этого следует, что работа рецепторов зависит не только от внутремозговых сигналов, обеспеченных грелином. Более того, работа GHR-R1A может быть подавлена не только через фармакологические антагонисты грелиновых эффектов, но также независимо от грелина (например через использование противоположных агонистов) (Mokrosinski and Holst., 2010).
Заинтересованность в GHS-R1A как в мишени для лечения появилась в 1980х годах, когда пептид, называвшийся пептид 6 релизинг-гормон роста (GHRP-6), каноничный представитель класса синтетических молекул, известных как секретируемый гормон роста (GHS), был определен как сильнейший стимулятор гипоталамо-гипофизарных осей роста (Bowers et al., 1984). Рецепторы к этим лигандам, GHR-R1A, были впервые описан несколько лет спустя группой MerckandCo (Howard et al., 1996).
Вскоре после исследования грелина, как первого эндогенного лиганда для GHS-R1A (Kojima et al., 1999), стало ясно что эти рецепторы также являются потенциальной цель для контроля за приемом пищи и ожирением. На грызунах инъекции грелина (периферически или центрально) вызывали быстрый орексиновый ответ (Asakawa et al., 2001; Wren et al., 2000). Также было найдено, что хроническая стимуляция рецепторов грелином (Tschop et al., 2000) или синтетически выращенными гормонами (Lall et al., 2001) повышала массу тела у грызунов. Уровни грелина повышаются перед приемом пищи (Cummings et al., 2001) и была показана корреляция со степенью голода у здоровых особей (Cummings et al., 2004) определяющяя то, что, по крайней мере в нормальной физиологии, острые изменения грелина, как изменяющегося гормона голода, могут участвовать в формировании решения к употреблению пищи.