Дирак бился над этой проблемой в течение двух лет и, наконец, в декабре 1929 года нашел решение. Он предположил, что отрицательные уровни энергии заполнены морем ненаблюдаемых электронов. Они ни с чем не взаимодействуют: они находятся за декорациями театра, перед которыми играют актеры. Актеры и представляют мир положительной энергии, которую можно измерить. Но бывает, что один из электронов, которые живут в этом море, при приложении внешней энергии «выпрыгивает», оставляя за собой «дырку». Дирак считал, что эта «дырка» будет принимать вид протона. «Выпрыгнувший» же электрон станет обычным наблюдаемым электроном. Однако коллеги напомнили Дираку, что электрон имеет массу в 2000 раз меньше, чем протон, и значит, невозможно, чтобы, выпрыгивая из моря отрицательной энергии, он оставил за собой пустоту в 2000 раз тяжелее, чем он сам. Дирак признал свою ошибку и в 1931 году согласился, что «дыра» должна иметь такую же массу, как и электрон, но с положительным электрическим зарядом: «[Мы столкнулись лицом к лицу] с новой частицей, неизвестной физике, которая имеет такую же массу, как и электрон, но с противоположным зарядом».
«Море Дирака», которое объясняет существование антиматерии.
В 1932 году американский физик Карл Дейвид Андерсон обнаружил эту загадочную частицу: позитрон, античастица электрона. Данное открытие подтвердило правоту уравнения Дирака и одного из великих предсказаний релятивистской квантовой механики.
Тем не менее уравнение Дирака не давало полного объединения теории относительности и квантовой теории, так как оно не описывало ни того, что происходит во время столкновения между электроном и фотоном, ни того, что происходит в процессе аннигиляции, когда позитрон сталкивается с электроном, выделяя два или три фотона с очень большой энергией. Но чтобы понять суть этих проблем, нам необходимо переместиться во времени и вернуться в середину XIX века, чтобы познакомиться с одним из лучших физиков-экспериментаторов истории, британцем Майклом Фарадеем (1791-1867).
Поле, заполняющее пространство
Сын малообеспеченного человека, Фарадей получал образование самостоятельно, благодаря книгам, которые попадались ему в течение тех семи лет, что он был учеником переплетчика. Его открытия были впечатляющими: он установил различные связи между электричеством и магнетизмом, заложил основы электрохимии, изобрел электродвигатель и динамо... И все это Фарадей сделал, будучи «математически невежественным»: он не использовал уравнений и формул, чтобы описать свои открытия, он излагал их обычным «уличным» языком. Но главным теоретическим достижением Фарадея было создание понятия поля. В то время никто не мог объяснить, почему яблоко падает с дерева или почему Земля вращается вокруг Солнца. Ньютон открыл закон тяготения, но не объяснил, почему он работает. Все это выглядело, как если бы Солнце порождало загадочную силу на планетах, на большом расстоянии и практически мгновенно. Из-за своей абсурдности такое объяснение не нашло общей поддержки. Но закон тяготения работал, и так хорошо, что ученые отложили в долгий ящик теоретические проблемы, которые он поднимал... до того времени, когда Фарадей завел речь о полях.
Мы не отдаем себе в этом отчет, но пространство, которое нас окружает, содержит не только материю. Например, если бы мы освободили комнату от всей находящейся в ней материи до последней пылинки и до последней молекулы воздуха, мы все равно не могли бы утверждать, что в ней совсем ничего нет.
То, что мы обычно называем силой (какой бы она ни была, гравитационной, электрической или магнитной), является не чем иным, как действием, которое оказывает поле на помещенное в него тело. Что еще более важно: материя обладает свойствами (мы уже открыли два — массу и заряд), которые делают ее чувствительной к различным полям. Если материя лишена одного из них (например, если электрический заряд равен нулю), соответствующее поле не оказывает на нее никакого действия, как если бы его вовсе не было. Фарадей выявил существование этих полей посредством опыта, который мы часто проводим в школах. Итак, положим железные опилки на листок бумаги и поместим снизу магнит. Опилки начнут перемещаться, образуя характерный узор, соответствующий силовым линиям магнитного поля. Если мы уберем магнит и немного потрясем бумагу, образовавшийся узор исчезнет. Это означает, что магнитное поле, появившееся благодаря магниту, изменяет свойства пространства.