В 1929 году Гейзенберг и Паули, изучавшие проблему собственной энергии электрона с квантовой точки зрения, получили первые результаты, из которых следовало: энергия электрона бесконечна. Это объясняется тем фактом, что в квантовой электродинамике электрон не является просто частицей, а сопровождается облаком виртуальных фотонов. Речь идет о выпущенных фотонах, которые затем поглощаются этим же электроном, и так до тех пор, пока они не будут обнаружены наблюдателем. Принцип неопределенности Гейзенберга позволяет электрону испускать фотоны, обладающие сколь угодно большой энергией...
Стало быть, существует теория, позволяющая детально рассчитать собственную энергию электрона при его взаимодействии со своим полем, но когда мы ее применяем, внезапно со всех сторон возникают бесконечные величины. Израсходовав все свои возможности, физики больше не знали, что делать. Блистательный Гейзенберг должен был признать себя побежденным: он оставил эту тему и посвятил себя изучению сегнетоэлектричества.
Фейнман изучал этот вопрос с разных сторон еще в то время, когда был студентом МТИ. Осенью 1940 года он возобновил свои попытки и спросил себя: почему бы не исключить эти бесконечные величины, предположив, что электрон не взаимодействует со своим собственным полем? Он даже выдвинул еще более дерзкую идею: а что если явление, которое мы называем электромагнитным полем и которое возникло в результате обмена виртуальными фотонами, было фикцией? Не мог ли электромагнетизм быть простым взаимодействием между заряженными частицами, не требующим для своего существования никакого поля? Как он заявил впоследствии в своей нобелевской речи:
«Мне казалось очевидным, что идея частицы, которая воздействует сама на себя, не является необходимой; это было даже глупо. Именно тогда я подумал, что электроны не могут взаимодействовать сами с собой, а только с другими электронами. Это означало, что не существует никакого поля. Речь идет о прямом взаимодействии между зарядами, правда, с известными оговорками».
Такие идеи были очень рискованными, но именно по этой причине они не оставили равнодушным Уилера. Если речь шла об исследовании новых горизонтов, трудно представить лучшего тандема, чем Фейнман и Уилер. Они были из тех, кто не боится рисковать.
Плевать на мины. Полный вперед!
Заявление Фейнмана, которое перекликается с фразой американского адмирала Дэвида Фаррагута, произнесенной во время Гражданской войны в США
Фейнман знал, что у его идеи был существенный изьян: сопротивление излучения. Когда заряженная частица ускоряется, она испускает излучение и теряет энергию. Поэтому модель атома Резерфорда была непонятной с точки зрения Классической физики: электрон, вращаясь вокруг атома, обладает центростремительным ускорением. Именно сопротивление излучения заставило Бора ввести понятие квантовой орбиты.
Чтобы электрон начал двигаться, на него должна действовать сила. И сила, действующая на заряженный электрон, должна отличаться от той, которая действует на незаряженный.
Эта сила была названа сопротивлением излучения, и согласно принятым взглядам, она создавалась электроном, взаимодействующим с самим собой. Гипотеза же Фейнмана утверждала, что электрон действует только на другие электроны. Но если бы существовал единственный электрон в мире, испускал бы он излучение? А если бы существование сопротивления излучения требовало присутствия какой-то другой частицы? Фейнман заинтересовался этим вопросом, представив, что в мире существует только два электрона. Предположим, что первый начинает двигаться: в таком случае, согласно законам электромагнетизма, он оказывает воздействие на второй, что заставляет его тоже двигаться и в результате оказывать воздействие на первый. Могло бы это предположение объяснить сопротивление излучения?
Эта гипотеза очаровала Уилера, но он быстро обнаружил важное обстоятельство: эффект зависит от расстояния до другого электрона и от его заряда, чего быть не должно. К тому же Фейнман не учел обязательную задержку во времени — воздействие на первый электрон произойдет через какой-то временной интервал, так как, согласно теории относительности, ничто не движется быстрее, чем свет. И тогда Уилер предложил еще более сумасшедшую идею: а что если электромагнитная сила, оказываемая второй частицей, действует вспять во времени? Такое предложение походило больше на научную фантастику, чем на физику, но важным в этом подходе является то, что законы электромагнетизма позволяют существовать как волнам, выпущенным до того, как они будут поглощены (опоздание волны), так и волнам, поглощенным до того, как они будут выпущены (опережение волны). Иными словами, ничто в уравнениях не противоречило этому предположению. Единственное возражение носило философский характер: необходимо было считаться с принципом причинности, согласно которому причина должна предшествовать последствию. Например, поезд должен покинуть вокзал, с которого он отправляется, до того, как он прибудет на конечную станцию, или мяч должен попасть в цель после того, как игрок по нему ударит, а не наоборот. Но согласно предложению Уилера, если мы перемещаем заряд, другой заряд начнет двигаться немного раньше.