В это время Фейнман и Уилер упорно работали над квантовой формулировкой своей теории. Главной проблемой было то, что математические уравнения этой «экзотической» теории плохо адаптировались для квантовой механики. Сложность заключалась во взаимодействии между частицами в различные моменты времени: «Характер траектории одной частицы в данный момент времени зависит от характера траектории другой частицы в совершенно другой момент времени». В квантовой механике время очень хорошо контролируется: если мы знаем состояние системы в определенный момент времени, то уравнения позволяют определить состояние системы в любой другой момент. Но электродинамика Фейнмана и Уилера требовала данных о расположениях и перемещениях многочисленных частиц в несколько различных моментов, и все это для того, чтобы определить состояние одной частицы. Настоящая головоломка!
В течение осени и зимы 1941-1942 годов Фейнман работал не покладая рук над своей теорией, используя своих старых «знакомых»: формализм Лагранжа и принцип наименьшего действия. Основной идеей данного подхода было то, что не следует обращать внимание на происходящее в определенный момент, а скорее, нужно сконцентрироваться на интервале времени. Напомним, что цель этого подхода состоит в том, чтобы выяснить, какой из всех путей, позволяющих частице перемещаться из одного пункта в другой, имеет наименьшее среднее значение действия. Расчеты Фейнмана показали, что с помощью этого принципа теория Уилера могла быть переформулированной, так как он позволял рассматривать путь частицы как одно целое: «Здесь мы имеем инструмент, который описывает характер траектории через все пространство-время». Но как это выразить на языке квантовой механики? Чтобы разобраться, будет полезно познакомиться с некоторыми тонкостями теории.
Если существует болезнь, симптом которой — вера в то, что логика может контролировать превратности судьбы, тогда Фейнман страдал этой болезнью, именно так же, как он страдал хроническим нарушением пищеварения.
Джеймс Глейк в биографии Ричарда Фейнмана
Волновая функция, описывающая поведение субатомной частицы (и которая находится при решении уравнения Шрё- дингера), доказывает, что все частицы ведут себя в каком-то смысле как волны в бассейне. Это означает, что они могут быть подвержены волновым феноменам, таким, как дифракция и интерференция. Особенностью волновой функции является
то, что она описывает не частицу как таковую, а вероятность найти эту частицу в указанном месте. Если волновая функция отличается от нуля в некоторых точках (при этом она может принимать как положительные, так и отрицательные значения), частица ведет себя так, как будто она находится во многих местах одновременно. Уравнения квантовой механики служат для нахождения изменения этой волновой функции во времени. Другими словами, они определяют трансформацию совокупности данных вероятностей (найти частицу в определенном месте) во времени. Однако существует важная и очень тонкая деталь, которая объясняет, почему кажется, что такие частицы ведут себя как волны: вероятность определяется не самой волновой функцией, но ее квадратом.
Квантовая механика дает совершенно абсурдное с точки зрения здравого смысла описание природы.
Ричард Фейнман
Допустим, мы желаем узнать вероятность того, что две частицы, А и В, находятся в одной коробке. Квантовая теория убеждает нас, что волновая функция системы соответствует сумме волновых функций каждой из этих частиц. Теперь предположим, что значение волновой функции А внутри коробки равняется ½, значение волновой функции В - ½. Если бы была только А, вероятность найти ее в коробке являлась бы значением волновой функции в квадрате, а именно (½)² = ¼. Если бы была только В, вероятность была бы (-½)² = ¼. А сейчас самое удивительное: так как мы имеем две частицы, вероятность найти одну из них равняется сумме значений их волновых функций в квадрате: {(½) + (-½)}². Результат — ноль! Можно ли представить настолько нелепую ситуацию? Если бы речь шла об одной частице, у нас был бы один шанс из четырех найти ее в коробке. Но с того момента, когда их две, нет никакого шанса найти одну или вторую. Фактически речь идет о явлении интерференции, с которой мы уже сталкивались в опыте с двумя щелями. Частицы способны иметь волновые свойства, они могут взаимодействовать и подавлять друг друга.
РИСУНОК 1: Путь от А к С проходит через В.
РИСУНОК 2: Путь от А к С проходит через все возможные пункты В: В1, В2, В3.