Выбрать главу

Приведем еще несколько примеров работы и сохранения энергии. Рассмотрим тело, которое вначале имеет кинетическую энергию и быстро двигается, скользя по полу с трением. Оно останавливается. В начале кинетическая энергия не равна нулю, а в конце она равна нулю', существует работа, произ­веденная силами, потому что раз есть трение, то есть и составляющая силы в направлении, противоположном на­правлению движения, и энергия постепенно теряется. Теперь рассмотрим массу на конце маятника, который ка­чается в вертикальной плоскости в поле тяжести без тре­ния. Здесь наблюдается нечто другое, потому что, когда масса опускается, сила направлена тоже вниз, а когда подымается, сила направлена в обратную сторону, так что у F·ds на спуске и на подъеме разные знаки. В соответствующих точках спуска и подъема значения F·ds равны по величине, но противополож­ны по знаку, так что в итоге интеграл есть чистый нуль. Поэтому кинетическая энергия в конце спуска в точности такая же, какой она была в начале подъема; это и есть принцип сохранения энер­гии. (Заметьте, что в присутствии сил трения сохранение энер­гии на первый взгляд не выполняется. Значит, нужно искать другую форму энергии. И действительно, оказывается, что когда два тела трутся друг о друга, то возникает тепло, мы же сейчас делаем вид, что об этом не знаем.)

§ 2. Работа, выполняемая тяжестью

Теперь займемся задачей потруднее, когда силы уже не по­стоянны и не направлены вниз, как раньше. Мы рассмотрим, например, движение планеты вокруг Солнца или спутника во­круг Земли.

Сперва мы рассмотрим движение тела, которое падает из точ­ки 1 прямо на Солнце или на Землю (фиг. 13.2).

Фиг. 13.2. Падение малой массы m под

действием тяжести на боль­шую массу М.

Будет ли в этих обстоятельствах сохраняться энергия? Единственное отличие от того, что было раньше, — что теперь сила не постоян­на, она меняется по мере падения. Мы знаем, что сила равна произведению GM/r2 на массу m падающего тела. Конечно, и теперь кинетическая энергия при падении возрастает, как воз­растала и тогда, когда нас еще не волновало изменение силы с высотой. Вопрос только в том, можно ли отыскать иную, отлич­ную от mgh, формулу для потенциальной энергии, найти дру­гую функцию расстояния от Земли, чтобы для нее сохранение энергии не нарушалось.

Этот одномерный случай рассматривать легко, потому что мы знаем, что изменение кинетической энергии равно интегралу от начала движения до конца от силы GMm/r2 по перемеще­нию dr

В формуле нет никакого косинуса, потому что сила и перемеще­ние направлены одинаково. Интегрировать dr/r2 легко; получает­ся (—1/г), так что

Перед нами другая формула для потенциальной энергии. Уравнение (13.12) говорит нам, что величина 1/2mv2- GMm/r, вычисленная в точке 1, в точке 2 или в любой другой, остается постоянной.

У нас теперь есть формула для потенциальной энергии в поле тяготения для вертикального движения. Здесь возникает интересный вопрос: можно ли добиться вечного движения в поле тяготения? Поле-то меняется, в разных местах у него разная напряженность и разное направление. Нельзя ли взять беско­нечную ленту без трения и запустить ее, скажем, так: пусть она сперва поднимает тело из одной точки в другую, потом проводит его по дуге окружности в третью точку, опускает на неко­торый уровень, сдвигает по наклонному направлению и выводит на новый путь и т. п., так что по возвращении в началь­ную точку оказывается, что поле тяготения совершило неко­торую работу и кинетическая энергия тела возросла? Нельзя ли так начертить эту траекторию, чтобы, обойдя по ней, тело приобрело чуть-чуть больше скорости, чем имело вначале? Так получится вечное движение. Но ведь оно невозможно, значит, мы обязаны доказать, что такая траектория немыслима.