Выбрать главу

*Энергия в единицах табл. 9.2 есть Ѕ(v2x+v2y)-1/r

Глава 14

РАБОТА И ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ (II)

§1. Работа

§2. Движение при наложенных связях

§3. Консерватив­ные силы

§4. Неконсерватив­ные силы

§5. Потенциалы и поля

§ 1. Работа

В предыдущей главе мы ввели много новых понятий и идей, играющих важную роль в физике. Идеи эти столь важны, что, пожалуй, стоит посвятить целую главу внимательному ознакомлению с ними. Мы не будем здесь повторять «доказательства» и красивые приемы, поз­воляющие просто получать важные результаты, а вместо этого сосредоточим наше внимание на обсуждении самих идей.

Штудируя любой вопрос технического харак­тера, для понимания которого нужна математика, мы всегда сталкиваемся с необходимо­стью понять и отложить в памяти массу фактов и идей, объединенных определенными связями, Существование этих связей можно «доказать или «показать». Ничего не стоит спутать само доказательство с тем соотношением, которое оно устанавливает. Конечно, куда важнее вы­учить и запомнить не доказательство, а само соотношение. Тогда уж в любом случае мы смо­жем сказать: «Легко показать, что...» то-то и то-то верно, а то и действительно показать это, Приводимые доказательства почти всегда со­стряпаны, сфабрикованы с таким расчетом чтобы, во-первых, их легко было воспроизвести мелом на доске или пером на бумаге и, во-вто­рых, чтобы они выглядели поглаже. В итоге доказательство выглядит обманчиво просто, хотя, быть может, на самом деле автор много часов искал разные пути расчета, пока не нашел самый изящный — тот, который приводит к ре­зультату за кратчайшее время! Глядя на вывод формулы, надо вспоминать не этот вывод, а скорее сам факт, что то-то и то-то можно доказать. Конечно, если доказательство требует особых математических выкладок или «трюков», никогда прежде не виденных, то надо обратить внимание... впрочем, не на сами трюки, а на их идею.

Ни одно из доказательств, приведенных в этом курсе, автор не запомнил с тех времен, когда сам учил физику. Наоборот, он просто вспоминает, что то-то является верным, и, пытаясь пояснить, как это доказывается, сам придумывает доказатель­ство в тот момент, когда оно необходимо. И всякий, кто дейст­вительно изучил предмет, должен быть в состоянии поступать так же, не запоминая доказательств. Вот почему в этой главе мы будем избегать вывода различных положений, сделанных ранее, а просто будем подводить итоги.

Первая идея, которую нужно будет переварить,— это то, что работа производится силой. Физический термин «работа» ничего общего не имеет с общежитейским ее смыслом...

Физическая работа выражается в виде ∫F·ds, или «кон­турный интеграл от F по ds «скалярно»; последнее означает, что если сила направлена, скажем, в одну сторону, а тело, на ко­торое сила действует, перемещается в другую сторону, то ра­боту совершает только составляющая силы в направлении пере­мещения. Если бы, например, сила была постоянна, а смеще­ние произошло на конечный отрезок Ds, то работа, выполнен­ная постоянной силой на этом пути, была бы равна произведе­нию составляющей силы вдоль Ds на Ds. Правило гласит: «ра­бота есть сила на путь», но подразумевается лишь составляющая силы в направлении перемещения, умноженная на Ds, или, что одно и то же, составляющая перемещения в направлении силы, умноженная на F.

Очевидно, что сила, направленная под прямым углом к перемещению, никакой работы не произведет.

Если, далее, вектор смещения Ds разложить на составляю­щие, т. е. если истинное смещение есть Ds и мы хотим считать, что оно состоит из составляющих смещения Dx; в направлении х, Dy в направлении у и Dz в направлении z, то вся произве­денная работа перемещения тела из одного места в другое может быть рассчитана по трем частям: отдельно работа смещения вдоль х, вдоль у и вдоль z. Работа перемещения вдоль х тре­бует знания только соответствующей составляющей силы Fx и т. д., так что работа равна FxDx+FyDy+FzDz. Когда сила не постоянна, а движение запутанное, криволинейное, то нуж­но разбить путь на множество малых Ds, сложить работы переноса тела вдоль каждого Ds и перейти к пределу при Ds, стремящемся к нулю. В этом смысл понятия «контурный интеграл».