v2=2ga.
С какой скоростью должен двигаться искусственный спутник, чтобы не падать на Землю? Мы когда-то решали эту задачу и получили v2=GM/a. Значит, чтобы покинуть Землю, нужна скорость, в Ц2 большая, чем скорость вращения спутника вокруг Земли. Иными словами, чтобы улететь с Земли, нужно вдвое больше энергии (энергия пропорциональна квадрату скорости), чем чтобы облететь вокруг нее. Поэтому исторически сначала были совершены облеты искусственных спутников вокруг Земли, для чего понадобились скорости около 7,8 км/сек. И только потом космические корабли были заброшены в мировое пространство; для этого потребовалось уже вдвое больше энергии, т. е. скорости около 11,2 км/сек.
Продолжим теперь наш обзор характеристик потенциальной энергии. Давайте рассмотрим взаимодействие двух молекул или двух атомов, например двух атомов кислорода. Когда они находятся далеко друг от друга, они притягиваются с силой, обратно пропорциональной седьмой степени расстояния, а при тесном сближении они сильно отталкиваются. Проинтегрировав минус седьмую степень расстояния, чтобы получить работу, мы увидим, что потенциальная энергия U (функция расстояния между атомами кислорода) изменяется как минус шестая степень расстояния (на больших расстояниях).
Если мы чертим некую кривую потенциальной энергии U(r) (фиг. 14.3), то при больших r она выглядит как r-6, а при достаточно малых r достигает минимума.
Фиг. 14.3. Потенциальная энергия взаимодействия двух атомов как функция расстояния между ними.
Минимум потенциальной энергии в точке r=d означает, что если мы сдвинемся от нее на малое расстояние, на очень малое расстояние, то произведенная работа, равная изменению потенциальной энергии на этом промежутке, почти равна нулю, потому что на донышке кривой энергия почти не меняется. Значит, в этой точке сила равна нулю, и это есть точка равновесия. Условие равновесия можно высказать и иначе: для удаления из точки равновесия в любую сторону нужно затратить работу. Когда два атома кислорода расположены так, что никакой энергии из их силы взаимодействия больше выжать нельзя, то они находятся в наинизшем энергетическом состоянии и промежуток между ними равен d. Так выглядит молекула кислорода, когда она не нагрета. При нагревании атомы колеблются и расходятся; их можно и совсем развести, но для этого нужно определенное количество работы или энергии, равное разности потенциальных энергий в точках r=d и r=Ґ. При попытке сблизить атомы энергия быстро возрастает вследствие их взаимного отталкивания.
Почему мы говорим о потенциальной энергии? Потому что идея силы не очень пригодна для квантовой механики, там более естественна идея энергии. Когда мы рассматриваем более сложные взаимодействия: ядерного вещества, молекул и т. д., то, хотя понятия силы и скорости «рассасываются» и исчезают, оказывается, что понятие энергии все же остается. Поэтому в книгах по квантовой механике мы находим кривые потенциальной энергии, но очень редко увидим график силы взаимодействия двух молекул, потому что те, кто изучает эти явления, больше уже привыкли думать об энергии, чем о силе.
Заметим еще, что, когда на тело одновременно действуют несколько консервативных сил, потенциальная энергия тела есть сумма потенциальных энергий от каждой силы. Это то, что мы утверждали и раньше, потому что, когда сила представляется векторной суммой сил, работа, производимая ею, равна сумме работ, производимых отдельными силами; поэтому ее можно представить как изменения потенциальных энергий от каждой силы по отдельности. Значит, общая потенциальная энергия равна сумме всех частей.
Мы можем обобщить это на случай системы многих тел, как, например, Юпитера, Сатурна, Урана и т. д. или атомов кислорода, азота, углерода и т. д., взаимодействующих друг с другом попарно, причем силы взаимодействия каждой пары консервативны. В таких условиях кинетическая энергия всей системы есть просто сумма кинетических энергий всех отдельных атомов, или планет, или частиц, а потенциальная энергия системы есть сумма потенциальных энергий взаимодействия отдельных пар, рассчитанных в предположении, что других частиц нет. (На самом деле для молекулярных сил это неверно, и формула получается несколько сложнее; для ньютонова тяготения это определенно справедливо, а для молекулярных сил годится лишь как приближение. Можно, конечно, говорить о потенциальной энергии молекулярных сил, но она иногда оказывается более сложной функцией положений атомов, чем простая сумма попарных взаимодействий.) Поэтому потенциальная энергия в частном случае тяготения представляется суммой по всем парам i и j членов — Gmimj/rij [как было показано в уравнении (13.14)]. Уравнение (13.14) выражает математически следующее предложение: общая потенциальная плюс общая кинетическая энергии не меняются со временем. Пусть себе различные планеты вращаются, обращаются и покачиваются, все равно если подсчитать общую потенциальную и общую кинетическую энергии, то окажется, что их сумма всегда остается постоянной.