Выбрать главу

Вот вам шесть законов сохранения: три замысловатых, свя­занных с пространством и временем, а три простых, связанных с обычным счетом.

К сохраняемости энергии доступность и полезность энергии не имеет никакого отношения. В атомах морской воды немало энергии движения, так как температура моря довольно высока, но нет никакой возможности направить эту энергию в опреде­ленное русло, не отобрав ее откуда-нибудь еще. Иначе говоря, хотя нам известен тот факт, что энергия сохраняется, но не так-то просто сохранить энергию, пригодную для человека. Законы, управляющие количеством пригодной для человека энергии, называются законами термодинамики и включают понятие, называемое энтропией необратимых термодинамиче­ских процессов.

Наконец, остановимся на том, откуда мы сегодня можем по­лучать необходимый запас энергии. Энергией нас снабжают Солнце и дожди, уголь, уран и водород. Впрочем, и дожди, и уголь в конце концов без Солнца были бы невозможны. Хотя энергия сохраняется, природа, по всей видимости, этим ничуть не интересуется; она освобождает из Солнца множество энергии, но только одна двухмиллиардная часть ее падает на Землю. Природа сохраняет энергию, но в действительности о ней не заботится, расточая ее направо и налево. Мы уже получаем энергию из урана, мы можем получать ее и из водорода, но пока это получение связано со взрывами, с большой опасностью. Если бы мы смогли научиться управлять термоядерными реак­циями, то энергия, которую можно получать, тратя по 10 л воды в секунду, равнялась бы всей электроэнергии, производимой сей­час за это время в Соединенных Штатах. Шестисот литров реч­ной воды в минуту хватило бы, чтобы снабжать энергией всю страну! Именно физикам придется придумать, как избавить нас от нужды в энергии. И это, бесспорно, достижимо.

* Нас здесь интересует не столько итоговая формула (4.3) (она вам, должно быть, знакома), сколько возможность получить ее теоретическим

путем.

Глава 5

ВРЕМЯ И РАССТОЯНИЕ

§ 1. Движение

§ 2. Время

§ 3. Короткие времена

§ 4. Большие времена

§ 5. Единицы и стандарты времени

§ 6. Большие расстояния

§ 7. Малые расстояния

§ 1. Движение

В этой главе мы рассмотрим понятия время и расстояние. Мы уже говорили, что физика, как, впрочем, любая другая наука, основы­вается на наблюдениях. Можно даже сказать, что развитие физических наук до их современ­ного уровня в огромной степени зависело от фактов, основанных на количественных наблю­дениях. Только с помощью количественных наблюдений можно получить количественные соотношения — сердце современной физики.

Многие считают, что физика берет свое на­чало с опыта, проведенного Галилеем 350 лет назад, а сам Галилей является первым физиком. До этого времени изучение движения было чи­сто философским и основывалось на доводах, которые были плодом фантазии. Большинство этих доводов были придуманы Аристотелем и другими греческими философами и рассматрива­лись как «доказанные». Но Галилей был скеп­тиком и поставил следующий опыт: по наклон­ной плоскости он пускал шар и наблюдал за его движением (фиг. 5.1).

Фиг. 5.1. Шарик катится по наклонной плоскости.

Галилей не просто смотрел, как катится шар, а измерял то рас­стояние, которое прошел шар, и определял время, в течение которого шар проходил это расстояние. Способ измерения расстояний был хорошо известен еще задолго до Галилея, од­нако точного способа измерения времени, осо­бенно коротких интервалов, не было. Хотя впоследствии Галилей изобрел более совершен­ные часы (отнюдь не похожие на современные), но в своих первых опытах для отсчета равных промежутков времени он использовал собствен­ный пульс. Давайте сделаем то же самое.