Выбрать главу

2. Пространство. Время. Движение

Глава 15

СПЕЦИАЛЬНАЯ

ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ

§ 1. Принцип относительности

§ 2. Преобразование Лоренца

§ 3. Опыт Майкельсона — Морли

§ 4. Преобразование времени

§ 5. Лоренцево сокращение

§ 6. Одновремен­ность

§ 7. Четырехвекторы

§ 8. Релятивистская динамика

§ 9. Связь массы и энергии

§ 1. Принцип относительности

Свыше двухсот лет считалось, что урав­нения движения, провозглашенные Ньютоном, правильно описывают природу. Потом в них была обнаружена ошибка. Обнаружена и тут же исправлена. И заметил ошибку, и исправил ее в 1905 г. один и тот же человек — Эйн­штейн.

Второй закон Ньютона, выражаемый урав­нением

безмолвно предполагал, что m — величина постоянная. Но теперь мы знаем, что это не так, что масса тела возрастает со скоростью. В формуле, исправленной Эйнштейном, mпоявилась в таком виде:

Здесь «масса покоя» m0— это масса неподвиж­ного тела, а c — скорость света (примерно 3·105 км/сек).

Для кого теория нужна лишь для реше­ния задач, тому этой формулы будет вполне достаточно. Больше ничего от теории относи­тельности ему не понадобится; он просто вве­дет в законы Ньютона поправку на изменяе­мость массы. Из самой формулы очевидно, что рост массы в обычных условиях незначителен.

Даже если v — скорость спутника (около 8 км/сек), то и при этих условиях v/c =3/105; под­становка этой величины в формулу показывает, что поправка к массе составит не более одной двухмиллиардной части самой массы, что, пожалуй, заметить невозможно. На самом деле, правильность формулы подтверждена наблюдением движения разнообразных частиц, скорость которых практически вплотную подходила к скорости света. В обычных условиях рост массы незаметен; тем заме­чательней, что он сперва был обнаружен теоретически, а уж после открыт на опыте. Хотя для достаточно больших скоростей рост может быть как угодно велик, открыт он был не таким путем. Закон этот в момент своего открытия означал лишь едва заметное изменение в некоторых цифрах. Тем интереснее разоб­раться, как сочетание физического размышления и физиче­ского эксперимента вызвало его к жизни. Вклад в это дело внесло немалое число людей, но конечным итогом их деятель­ности явилось открытие Эйнштейна.

У Эйнштейна, собственно говоря, есть две теории относи­тельности. Мы будем здесь говорить только о специальной теории относительности, ведущей свое начало с 1905 г. В 1915 г. Эйнштейн выдвинул еще одну теорию, называемую общей теорией относительности. Она обобщает специальную теорию на случай тяготения; мы не будем ее здесь обсуждать.

Принцип относительности впервые высказал Ньютон в одном из следствий из Законов Движения: «Относительные движения друг по отношению к другу тел, заключенных в каком-либо пространстве, одинаковы, покоится ли это про­странство или движется равномерно и прямолинейно без вра­щения». Это означает, к примеру, что при свободном полете межпланетного корабля с постоянной скоростью все опыты, поставленные на этом корабле, все явления, наблюдаемые на нем, будут таковы, как будто он покоится (конечно, при ус­ловии, что наружу из корабля выходить не будут). В этом смысл принципа относительности. Мысль эта — довольно про­ста; вопрос только в том, верно ли, что во всех опытах, произ­водимых внутри движущейся системы, законы физики выглядят такими же, какими они были бы, если бы система стояла на одном месте. Давайте же сначала посмотрим, так ли выглядят законы Ньютона в движущейся системе. Для этого нам снова понадобится помощь наших молодых людей — Мика и Джо.

Пускай Мик отправился вдоль по оси х с постоянной ско­ростью u и измеряет свое положение в какой-то точке, показан­ной на фиг. 15.1. Он обозначает «x-расстояние» точки в своей системе координат как х'. Джо стоит на месте и измеряет по­ложение той же точки, обозначая ее x-координату в своей системе через х. Связь между координатами в двух системах ясна из рисунка. За время t начало системы Мика сдвинулось на ut, и если обе системы вначале совпадали, то

x'=x-ut, у'=у,

z'=z, t' =t. (15.2)

Если подставить эти преобразования координат в законы Нью­тона, то законы эти превращаются в такие же законы, но в штрихованной системе; это значит, что законы Ньютона имеют одинаковый вид в движущейся и в неподвижной системах; потому-то, проделав любые опыты по механике, и нельзя ска­зать, движется система или нет.

Принцип относительности применялся в механике уже издавна. Многие, в частности Гюйгенс, пользовались им для вывода законов столкновения биллиардных шаров почти так же, как мы в гл. 10 доказывали сохранение импульса.

В прошлом столетии в результате исследования явлений электричества, магнетизма и света интерес к принципу отно­сительности возрос. Максвелл подытожил в своих уравнениях электромагнитного поля многие тщательные исследования этих явлений. Его уравнения сводят воедино электричество, магнетизм, свет. Однако уравнения Максвелла, по-видимому, не подчиняются принципу относительности: если преобразо­вать их подстановкой (15.2), то их вид не останется прежним. Значит, в движущемся межпланетном корабле оптические и электрические явления не такие, как в неподвижном; их можно использовать для определения его скорости, в частности опре­делить и абсолютную скорость корабля, сделав подходящие электрические или оптические измерения. Одно из следствий уравнений Максвелла заключается в том, что если возмущение поля порождает свет, то эти электромагнитные волны распро­страняются во все стороны одинаково и с одинаковой ско­ростью с=300 000 км/сек. Другое следствие уравнений: если источник возмущения движется, то испускаемый свет все равно мчится сквозь пространство со скоростью с. Так же бывает и со звуком: скорость звуковых волн тоже не зависит от движения источника.

Эта независимость от движения источника света ставит интересный вопрос. Положим, что мы едем в автомашине со скоростью и, а свет от задних фар распространяется со ско­ростью с. Дифференцируя первую строчку в (15.2), получаем

Фиг. 15.1. Две системы коорди­нат, находящиеся в равномерном относительном движении вдоль оси х.

Это означает, что, в согласии с преобразованиями Галилея, видимая скорость света по измерениям, проведенным из авто­машины, будет не с, а с — и. Например, скорость автомашины 100 000 км/сек, а скорость света 300 000 км/сек, тогда свет от фар будет удаляться с быстротой 200 000 км/сек. Во всяком случае, измерив скорость света, испускаемого фарами (если только справедливы преобразования Галилея для света), можно узнать скорость автомашины. На этой идее основыва­лось множество опытов по определению скорости Земли, но ни один из них не удался: никакой скорости обнаружено не было. Вы скоро познакомитесь очень подробно с одним из таких опытов. Вы разберетесь, что в нем случилось и в чем было дело. Что-то неладное творилось в ту пору с уравнениями физики. Но что именно?

§ 2. Преобразование Лоренца

Когда стало ясно, что с уравнениями физики не все ладится, первым долгом подозрение пало на уравнения электродинамики Максвелла. Они только-только были написаны, им было всего 20 лет от роду; казалось почти естественным, что они неверны. Их принялись переписывать, видоизменять и подгонять к тому, чтобы оказался выполненным принцип относительности в галилеевой форме (15.2). При этом в уравнениях электро­динамики появились новые члены; они предсказывали новые электрические явления, но эксперимент никаких таких явлений не обнаружил, и пришлось отказаться от попыток изменить уравнения Максвелла. Постепенно всем становилось ясно, что максвелловы законы электродинамики абсолютно правильны, а загвоздка в чем-то другом.