Отсюда вытекают интересные следствия. Пусть имеется тело с измеренной массой М, и предположим, что что-то стряслось и оно распалось на две равные части, имеющие скорости w и массы mw. Предположим теперь, что эти части, двигаясь через вещество, постепенно замедлились и остановились. Теперь их масса m0. Сколько энергии они отдали веществу? По теореме, доказанной раньше, каждый кусок отдаст энергию (mw-m0)с2. Она перейдет в разные формы, например в теплоту, в потенциальную энергию и т. д. Так как 2mw=M, то высвободившаяся энергия Е = (М-2m0)с2. Это уравнение было использовано для оценки количества энергии, которое могло бы выделиться при ядерном расщеплении в атомной бомбе (хотя части бомбы не точно равны, но примерно они равны). Масса атома урана была известна (ее измерили заранее), была известна и масса атомов, на которые она расщеплялась,— иода, ксенона и т. д. (имеются в виду не массы движущихся атомов, а массы покоя). Иными словами, и М и m0были известны. Вычтя одно значение массы из другого, можно прикинуть, сколько энергии высвободится, если М распадется «пополам». По этой причине все газеты считали Эйнштейна «отцом» атомной бомбы. На самом же деле под этим подразумевалось только, что он мог бы заранее подсчитать выделившуюся энергию, если бы ему указали, какой процесс произойдет. Энергию, которая должна высвободиться, когда атом урана подвергнется распаду, подсчитали лишь за полгода до первого прямого испытания. И как только энергия действительно выделилась, ее непосредственно измерили (не будь формулы Эйнштейна, энергию измерили бы другим способом), а с момента, когда ее измерили, формула уже была не нужна. Это отнюдь не принижение заслуг Эйнштейна, а скорее критика газетных высказываний и популярных описаний развития физики и техники. Проблема, как добиться того, чтобы процесс выделения энергии прошел эффективно и быстро, ничего общего с формулой не имеет.
Формула имеет значение и в химии. Скажем, если бы мы взвесили молекулу двуокиси углерода и сравнили ее массу с массой углерода и кислорода, мы бы могли определить, сколько энергии высвобождается, когда углерод и кислород образуют углекислоту. Плохо только то, что эта разница масс так мала, что технически опыт очень трудно проделать.
Теперь обратимся к такому вопросу: нужно ли отныне добавлять к кинетической энергии m0c2и говорить с этих пор, что полная энергия объекта равна mc2? Во-первых, если бы нам были видны составные части с массой покоя m0внутри объекта M, то можно было бы говорить, что часть массы M есть механическая масса покоя составных частей, а другая часть — их кинетическая энергия, третья — потенциальная. Хотя в природе и на самом деле открыты различные частицы, с которыми происходят как раз такие реакции (реакции слияния в одну), однако никакими способами невозможно при этом разглядеть внутри M какие-то составные части. Например, распад K-мезона на два пиона происходит по закону (16.11), но бессмысленно считать, что он состоит из 2p, потому что он распадается порой и на Зp!
А поэтому возникает новая идея: нет нужды знать, как тела устроены изнутри; нельзя и не нужно разбираться в том, какую часть энергии внутри частицы можно считать энергией покоя тех частей, на которые она распадется. Неудобно, а порой и невозможно разбивать полную энергию mc2тела на энергию покоя внутренних частей, их кинетическую и потенциальную энергии; вместо этого мы просто говорим о полной энергии частицы. Мы «сдвигаем начало отсчета» энергий, добавляя ко всему константу m0c2, и говорим, что полная энергия частицы равна ее массе движения, умноженной на с2, а когда тело остановится, его энергия есть его масса в покое, умноженная на с2.
И наконец, легко обнаружить, что скорость v, импульс Р и полная энергия Е довольно просто связаны между собой. Как это ни странно, формула m=m0/Ц(l-v2/c2) очень редко употребляется на практике. Вместо этого незаменимыми оказываются два соотношения, которые легко доказать:
Е2-P2c2=M02c4 (16.13)
и
Рс=Ev/c (16.14)
Глава 17
ПРОСТРАНСТВО - ВРЕМЯ
§ 1. Геометрия пространства-времени
§ 2. Пространственно-временные интервалы
§ 3. Прошедшее, настоящее, будущее
§ 4. Еще о четырехвекторах
§ 5. Алгебра четырехвекторов
§ 1. Геометрия пространства-времени
Теория относительности показывает, что связь между местоположением события и моментом, в какой оно происходит, при измерениях в двух разных системах отсчета совсем не такая, как можно было ожидать на основе наших интуитивных представлений. Очень важно ясно представить себе связь пространства и времени, возникающую из преобразований Лоренца. Поэтому мы глубже рассмотрим этот вопрос.
Координаты и время (х, y, z, t), измеренные «покоящимся» наблюдателем, преобразуются в координаты и время (х', y', z', t'), измеренные внутри «движущегося» со скоростью u космического корабля:
Давайте сравним эти уравнения с уравнением (11.5), которое тоже связывает измерения в двух системах, только одна из них теперь вращается относительно другой
х'=хcosq+ysinq,
у' = ycosq-xsinq, (17.2)
z'=z.
В этом частном случае у Мика и Джо оси х' и x повернуты на угол 0. Но и в том и в другом случае мы замечаем, что «штрихованные» величины — это «перемешанные» между собой «нештрихованные»: новое х' есть смесь х и у, а новое у' — другая смесь x и y.
Проведем следующую аналогию: когда мы глядим на предмет, мы различаем его «видимую ширину» и «видимую толщину». Но эти два понятия — «ширина» и «толщина» — отнюдь не основные свойства предмета. Отойдите в сторону, взгляните на предмет под другим углом — видимая ширина и видимая толщина предмета станут другими. Можно написать формулы, позволяющие узнать новые ширину и толщину по известным старым и по углу поворота. Уравнения (17.2) — как раз эти формулы. Можно сказать, что данная толщина есть своего рода «смесь» всех ширин и всех толщин. Если б мы не могли сдвинуться с места, если б мы на данный предмет всегда глядели из одного и того же положения, то нам все эти рассуждения показались бы неуместными; мы ведь и так всегда видели бы пред собой «настоящую» ширину и «настоящую» толщину и знали бы, что это совершенно разные качества предмета: один связан с углом, под каким виден предмет, другой требует фокусирования глаза и даже интуиции. Они казались бы абсолютно различными, их незачем было бы смешивать. Только потому, что мы в состоянии обойти вокруг предмета, мы понимаем, что ширина и толщина — это разные стороны одного и того же предмета.
Нельзя ли взглянуть на преобразование Лоренца таким же способом? Ведь и здесь перед нами смесь — смесь местоположения и момента времени. Из значений координаты и времени получается новая координата. Иначе говоря, в измерениях пространства, сделанных одним человеком, есть с точки зрения другого малая примесь времени. Наша аналогия позволяет высказать следующую мысль: «реальность» предмета, на который мы смотрим, включает нечто большее (говоря грубо и образно), чем его «ширину» и его «толщину», потому что обе они зависят от того, как мы смотрим на предмет. Оказавшись на новом месте, наш мозг немедленно пересчитывает и ширину, и толщину. Но когда мы будем двигаться с большой скоростью, наш мозг не сможет немедленно пересчитать координаты и время: у нас нет опыта движений со скоростями, близкими к световой, мы не ощущаем время и пространство как явления одной природы. Все равно как если бы нас усадили на какое-то место, заставили бы разглядывать ширину какого-то предмета и при этом не разрешали бы даже поворачивать голову. Мы теперь понимаем, что, будь у нас такая возможность, мы могли бы увидеть немножко от времени другого человека, как бы «заглянуть» сзади него.