Выбрать главу

Возьмем снова эксперимент с вращающимся столиком. Рас­смотрим отдельно тело и руки, с точки зрения человека, вра­щающегося на столике. Согнув руки с гантелями, мы стали вращаться быстрее, но заметьте, что тело при этом не изменило своего момента инерции; тем не менее оно стало вращаться быстрее, чем прежде. Если бы мы провели вокруг тела окруж­ность и рассмотрели только предметы внутри этой окружности, то их момент количества движения изменился бы; они закрути­лись бы быстрее. Следовательно, когда мы сгибаем руки, на тело должен действовать момент силы. Однако центробежная сала не может дать никакого момента, так как она направлена по радиусу. Это говорит о том, что среди сил, возникающих во вращающейся системе, центробежная сила не одинока: есть еще и другая сила. Эта другая сила носит название кориолисовой силы, или силы Кориолиса. Она обладает очень странным свой­ством: оказывается, что если мы во вращающейся системе дви­гаем какой-то предмет, то она толкает его вбок. Как и центро­бежная сила, эта сила кажущаяся. Но если мы живем во вра­щающейся системе и хотим что-то двигать по радиусу, то для этого мы должны тянуть его несколько вбок. Именно эта «бо­ковая» сила создает момент, который раскручивает наше тело.

Перейдем теперь к формулам и покажем, как кориолисова сила работает на практике. Пусть Мик сидит на карусели, ко­торая кажется ему неподвижной. С точки зрения Джо, который стоит на земле и знает истинные законы механики, карусель крутится. Предположим, что мы провели радиальную прямую на карусели и пусть Мик двигает прямо по этой линии какую-то массу. Я хочу показать, что для того, чтобы все было так, как мы описали, необходима боковая сила. Это можно увидеть, обратив внимание на момент количества движения вращающейся массы. Она крутится все время с одной и той же угловой ско­ростью w, поэтому ее момент количества движения равен

L=mvтавгr=mwr·г=mwг2.

Если масса расположена близко к центру, то он сравнительно мал, но если мы передвигаем ее в новое положение и если мы увеличиваем r, то масса mприобретает больший момент количества движения, т. е. во время движения по радиусу на нее должен действовать некоторый момент силы. (Чтобы на кару­сели двигаться по радиусу, нужно наклониться и толкаться вбок. Попробуйте как-нибудь сами проделать это.) Поскольку момент силы равен скорости изменения L во время движения массы mпо радиусу, то

где через fk обозначена сила Кориолиса. В действительности мы хотели узнать, какую боковую силу должен прилагать Мик, чтобы двигать массу mсо скоростью vr=dr/dt. Как видите, она равна FK=т/r=2mwvr.

Теперь, имея формулу для кориолисовой силы, давайте рас­смотрим несколько более подробно всю картину в целом. Как можно понять причину возникновения этой силы из элементар­ных соображений? Заметьте, что кориолисова сила не зависит от расстояния до оси и поэтому действует даже на оси! Оказывает­ся, что легче всего понять именно силу, действующую на оси вращения. Для этого нужно просто посмотреть на все происхо­дящее из инерциальной системы Джо, который стоит на земле. На фиг. 19.4 показаны три последовательных положения массы m, которая при t=0 проходит через ось.

Фиг. 19.4. Три последовательных положения движущейся по радиусу точки вращающегося столика.

Из-за вращения карусели масса, как мы видим, движется не по прямой линии, а по некоторому кривому пути, касающемуся диаметра в точке r=0. Но для того чтобы она двигалась по кривому пути, долж­на действовать ускоряющая сила. Это и есть кориолисова сила.

Однако с кориолисовой силой мы встречаемся не только в подобных ситуациях. Можно показать, что если предмет дви­жется с постоянной скоростью по краю диска, то на него тоже действует кориолисова сила. Почему? Мик видит предмет дви­жущимся со скоростью vм, а Джо видит его движущимся по окружности со скоростью vд=vм+wr, поскольку предмет вдо­бавок переносится каруселью. Как мы уже знаем, действующая в этом случае сила будет, в сущности, полностью центробежной силой скорости vд, равной тv2Д/r. Но, с точки зрения Мика, она должна состоять из трех частей. Все это можно записать в сле­дующем виде:

Итак, Frэто сила, которую измеряет Мик. Попытаемся по­нять, откуда что берется. Может ли Мик признать первый член? «Конечно,— сказал бы он,— даже если бы я не вращался, то та­кая центробежная сила должна возникнуть, если побежать по кругу со скоростью vм». Итак, это просто центробежная сила, появления которой Мик ожидает и которая не имеет ничего общего с вращением карусели. Вдобавок Мик думает, что долж­на быть еще одна центробежная сила, действующая даже на неподвижные предметы на его карусели. Это дает третий член. Однако в дополнение к ним существует еще один член — второй, который опять равен 2 mwvм. Раньше, при радиальной ско­рости, кориолисова сила fk была тангенциальна. Теперь же, при тангенциальной скорости, она радиальна. В самом деле, одно выражение отличается от другого только знаком. Сила всег­да имеет одно и то же направление по отношению к скорости независимо от того, куда направлена скорость. Она действует под прямым углом к скорости и равна по величине 2mwv.

Глава 20

ВРАЩЕНИЕ В ПРОСТРАНСТВЕ

§ 1. Моменты сил в трехмерном пространстве

§ 2. Уравнения вращения в векторном виде

§ 3. Гироскоп

§ 4. Момент количества движения твердого тел

§ 1. Моменты сил в трехмерном пространстве

В этой главе мы рассмотрим одно из наи­более замечательных и забавных следствий за­конов механики поведение крутящегося колеса. Для этого нам прежде всего нужно расширить математическое описание вращения, понятие момента количества движения, момента силы и т. д. на трехмерное пространство. Од­нако мы не будем использовать эти уравнения во всей их общности и изучать все следствия, ибо это займет многие годы, а нас ждут другие разделы, к которым мы вскоре должны перейти. В вводном курсе можно остановиться только на основных законах и их приложениях к весьма ограниченному числу особенно интересных слу­чаев.

Прежде всего хочу отметить, что для враще­ния в трех измерениях твердого тела или како­го-то иного объекта остается верным все, что мы получили для двух измерений. Иначе говоря, xFy-yFxтак и остается моментом силы «в пло­скости ху», или моментом силы «относительно оси z». Остается справедливым также, что этот момент силы равен скорости изменения вели­чины хрy-урх; если вы вспомните вывод урав­нения (18.15) из законов Ньютона, то увидите, что фактически мы не использовали того обсто­ятельства, что движение плоское, и просто диф­ференцировали величину хру-урхи получали xFy-yFx, так что эта теорема остается верной. Величину хру-урхмы называли моментом ко­личества движения в плоскости ху, или момен­том количества движения относительно оси z. Кроме плоскости ху, можно использовать дру­гие пары осей и получить другие уравнения. Возьмем, например, плоскость yz. Уже из симметрии ясно, что если мы просто подставим у вместо х, a z вместо у, то для момента силы получим выражение yFz-zFyи ypz-zpyбудет угловым моментом в этой плоскости. Разумеется, можно еще взять и плоскость zx и получить для нее