или
откуда
При обратной прогулке от точки С' свету приходится пройти то же расстояние; это видно из симметрии рисунка. Значит, и время возвращения то же (t3), а общее время равно 2t3. Мы запишем его в виде
Теперь мы можем сравнить оба времени. Числители в (15.4) и (15.5) одинаковы — это время распространения света в покоящемся приборе. В знаменателях член u2/с2 мал, если только и много меньше c. Знаменатели эти показывают, насколько изменяется время из-за движения прибора. Заметьте, что эти изменения неодинаковы — время прохождения света до С и обратно чуть меньше времени прохождения до Е и обратно. Они не совпадают, даже если расстояния от зеркал до В одинаковы. Остается только точно измерить эту разницу.
Здесь возникает одна техническая тонкость: а что если длины L не точно равны между собой? Ведь точного равенства все равно никогда не добьешься. В этом случае надо просто повернуть прибор на 90°, расположив ВС по движению, a BE — поперек. Различие в длинах тогда перестает играть роль, и остается только наблюдать за сдвигом интерференционных полос при повороте прибора.
Во время опыта Майкельсон и Морли расположили прибор так, что отрезок BE оказался параллельным движению Земли по орбите (в определенный час дня и ночи). Орбитальная скорость равна примерно 30 км/сек, и «снос эфира» в определенные часы дня или ночи и в определенное время года должен достигать этой величины. Прибор был достаточно чувствителен, чтобы заметить такое явление. Но никакого различия во временах обнаружено не было — скорость движения Земли сквозь эфир оказалось невозможно обнаружить. Результат опыта был нулевой.
Это было загадочно. Это настораживало. Первую плодотворную идею, как выйти из тупика, выдвинул Лоренц. Он допустил, что все материальные тела при движении сжимаются, но только в направлении движения. Таким образом, если длина покоящегося тела есть L0, то длина тела, движущегося
со скоростью и (назовем ее L\\, где значок \\ показывает, что движение происходит вдоль длины тела), дается формулой
Lll=L0Ц(1-u2/c2). (15.6)
Если эту формулу применить к интерферометру Майкельсона — Морли, то расстояние от В до С останется прежним, а расстояние от В до E укоротится до LЦ(1-u2/с2). Таким образом, уравнение (15.5) не изменится, но L в уравнении (15.4) изменится в соответствии с (15.6). В результате мы получим
Сравнивая это с (15.5), мы видим, что теперь t1+t2=2t3. Стало быть, если прибор действительно сокращается так, как мы предположили, то становится понятным, почему опыт Майкельсона — Морли никакого эффекта не дал.
Хотя гипотеза сокращения успешно объясняла отрицательный итог опыта, она сама оказалась беззащитной перед обвинением, что ее единственная цель — избавиться от трудностей в объяснении опыта. Она была чересчур искусственной. Однако сходные трудности возникали и в других опытах по обнаружению эфирного ветра. В конце концов стало казаться, что природа вступила в «заговор» против человека, что она прибегла к конспирации и то и дело вводит какие-то новые явления, чтобы свести к нулю каждое явление, с помощью которого человек пытается измерить и.
И наконец, было признано (на это указал Пуанкаре), что полная конспирация — это и есть закон природы! Пуанкаре предположил, что в природе есть закон, заключающийся в том, что нельзя обнаружить эфирный ветер никаким способом, т. е. абсолютную скорость обнаружить невозможно.
§ 4. Преобразование времени
При проверке, согласуется ли идея о сокращении расстояний с фактами, обнаруженными в других опытах, оказывается, что все действительно согласуется, если только считать, что время тоже преобразуется и притом так, как это высказано в уравнении (15.3). По этой-то причине время t3, которое затратит свет на путешествие от В к С и обратно, оказывается неодинаковым, если его вычисляет человек, делающий этот опыт в движущемся межпланетном корабле, или же неподвижный наблюдатель, который следит со стороны за этим кораблем. Для первого время t3 равно просто 2L/c, а для второго оно равно 2L/cЦ(1-u2/с2) [уравнение (15.5)]. Иными словами, если вы со стороны наблюдаете, как космонавт закуривает папиросу, вам кажется, что он делает это медленнее, нежели обычно, хотя сам он считает, что все происходит в нормальном темпе. Стало быть, не только длины должны сокращаться, но и приборы для измерения времени («часы») должны замедлить свой ход. Иначе говоря, когда часы на космическом корабле отсчитывают, по мнению космонавта, 1 сек, то, по мнению стороннего