cx=aybz-агbу,
cy=azbx-axbz, (20,9)
сг=ахbу -ауbх.
Если переменить порядок векторов а и b, т. е. вместо aXb взять bXa, то знак вектора с при этом изменится, ибо cz равно bхау-bуах. Векторное произведение поэтому не похоже на обычное умножение, для которого аb=bа. Для векторного произведения bXa=-aXb. Отсюда немедленно следует, что если а=b, то векторное произведение равно нулю, т. е. аXа=0.
Векторное произведение очень хорошо передает свойство вращения, поэтому важно понимать геометрическую связь векторов а, b и с. Связь между компонентами определяется уравнениями (20.9), исходя из которых можно получить следующие геометрические соотношения. Во-первых, вектор с перпендикулярен как к вектору а, так и к вектору b. (Попробуйте вычислить сXа и вы увидите, что в результате получится нуль.) Во-вторых, величина вектора с оказывается равной произведению абсолютных величин векторов b и а, умноженному на синус угла между ними. А куда направлен вектор с? Вообразите, что мы доворачиваем вектор а до вектора b в направлении угла, меньшего 180°; если крутить в ту же сторону болт с право-винтовой резьбой, то он должен двигаться в направлении вектора с. То, что мы берем правовинтовой болт, а не левовинтовой,— простая договоренность, которая постоянно напоминает нам, что в отличие от настоящих, «честных» векторов а и b вектор нового типа аXb по своему характеру слегка отличается от них, ибо строится он искусственно, по особому рецепту. У обычных векторов а и b, кроме того, есть специальное название: мы называем их полярными векторами. Примерами таких векторов служат координата r, сила F, импульс р, скорость v, электрическое поле Е и т. д. Все это обычные полярные векторы. Векторы же, содержащие одно векторное произведение обычных векторов, называются аксиальными векторами, или псевдовекторами. Примерами псевдовекторов, несомненно, могут служить момент силы t и момент импульса L. Кроме того, оказывается, что угловая скорость w, как и магнитное поле В, тоже псевдовектор.
Чтобы расширить наши сведения о математических свойствах векторов, нужно знать все правила их умножения, как векторного, так и скалярного. В настоящий момент нам нужны лишь очень немногие из них, однако в целях полноты мы выпишем все правила с участием векторного произведения. Впоследствии мы будем ими пользоваться. Эти правила таковы:
а) aX (b+c)=aXb+aXc,
б) (aa)Xb=a (aXb),
в) a· (bXc)=(aXb)·c, (20.10)
г) aX (bXc)=b(a·c)—c(a·b),
д) аXа=0,
е) а·(aXb)=0.
§ 2. Уравнения вращения в векторном виде
Возникает вопрос: можно ли с помощью векторного произведения записать какое-нибудь уравнение физики? Да, конечно, с его помощью записываются очень многие уравнения. Сразу же видно, например, что момент силы равен векторному произведению радиус-вектора на силу
t=rXF. (20.11)
Это просто краткая запись трех уравнений: тx=yFz-zFy и т. д. С помощью того же символа можно представить момент количества движения одной частицы в виде векторного произведения вектора расстояния от начала координат (радиус-вектора) на вектор импульса