Выбрать главу

Произведение каких чисел из табл. 22.3 равно чисто мнимому числу? После нескольких проб и ошибок мы найдем, что лучше всего умножить «512» на «128». Их произведение равно 0,13056+0,99144i. Приглядевшись к правилу умножения ком­плексных чисел, можно понять, что надежду на успех сулит ум­ножение этого числа на число, мнимая часть которого прибли­зительно равна действительной части нашего числа. Мнимая часть «64» равна 0,14349, что довольно близко к 0,13056. Произведение этих чисел равно -0,01350+0,99993i. Мы пе­рескочили через нуль, поэтому результат нужно разделить на 0,99996+0,00900 i. Как это сделать? Изменим знак i и умно­жим на 0,99996-0,00900 i (ведь x2+y2=1). В конце концов обнаружим, что если возвести 10 в степень i(1/1024) (512+128 + +64-4-2+0,20) или 698,20i/1024, то получится мнимая единица. Таким образом, Iog10i=0,068226i.

Таблица 22.3 · последовательное: вычисление квадратов

10i/1024 =1+0,0022486i

§ 6. Мнимые экспоненты

Фиг. 22.1. Вещественная и мнимая части функции 10is.

Чтобы лучше понять, что такое число в мнимой степени, вычислим последовательные степени десяти. Мы не будем каж­дый раз удваивать степень, чтобы не повторять табл. 22.3, и по­смотрим, что случится с действительной частью после того, как она станет отрицательной. Результат можно увидеть в табл. 22.4.

В этой таблице собраны последовательные произведения чис­ла 10i/8. Видно, что x уменьшается, проходит через нуль, дости­гает почти -1 (в промежутке между р=10 и р=11 величина точно равна -1) и возвращается назад. Точно так же величина у ходит взад-вперед.

Точки на фиг. 22.1 соответствуют числам, приведенным в табл. 22.4, а соединяющие их линии помогают следить за из­менением х и у. Видно, что числа х и у осциллируют; 10is повторяет себя. Легко объяснить, почему так происходит.

Таблица 22.4 · ПОСЛЕДОВАТЕЛЬНЫЕ ПРОИЗВЕДЕНИЯ ЧИСЛА 10i/8

Ведь i в четвертой степени — это i2 в квадрате. Это число равно единице; следовательно, если 100,68i равно i, то, возведя это число в четвертую степень, т. е. вычислив 102,72i, мы получим +1. Если нужно получить, например, 103,00i, то нужно умно­жить 102,72i на 100,28i. Иначе говоря, функция 10is повторяется, имеет период. Мы уже знаем, как выглядят такие кривые! Они похожи на график синуса или косинуса, и мы назовем их на время алгебраическим синусом и алгебраическим косинусом. Теперь перейдем от основания 10 к натуральному основанию. Это только изменит масштаб горизонтальной оси; мы обозначим 2,3025s через t и напишем 10is=eit, где t действительное число. Известно, что eit=x+iy, и мы запишем это число в виде

eit=cost+isint. (22.8)

Каковы свойства алгебраического косинуса cost и алгебраи­ческого синуса sint? Прежде всего x2+y2=1; это мы уже до­казали, и это верно для любого основания, будь то 10 или е. Следовательно, cos2t+sin2t=l. Мы знаем, что eit=1+it для малых t; значит, если t близкое к нулю число, то cost близок к единице, a sint близок к t. Продолжая дальше, мы придем к выводу, что все свойства этих замечательных функций, получаю­щихся в результате возведения в мнимую степень, в точности совпадают со свойствами тригонометрического синуса и триго­нометрического косинуса.