Фиг. 23,1. Комплексное число, изображенное точкой на «комплексной плоскости».
Итак, комплексное число можно представить двумя способами: явно выделить его действительную и мнимую части или задать его модулем r и фазовым углом q. Если заданы r и q, то х и у равны rcosq и rsinq, и, наоборот, исходя из числа x+iy, можно найти r=Ц(x2+y2)и угол q; tgq равен у/х (т. е. отношению мнимой и действительной частей).
Чтобы применить комплексные числа к решению физических задач, проделаем такой трюк. Когда мы изучали осциллятор, то имели дело с внешней силой, пропорциональной coswt. Такую силу F=F0coswt можно рассматривать как действительную часть комплексного числа F = F0exp(iwt), потому что exp(iwt)=coswt+isinwt. Такой переход удобен: ведь иметь дело с экспонентой легче, чем с косинусом. Итак, трюк состоит в том, что все относящиеся к осциллятору функции рассматриваются как действительные части каких-то комплексных функций. Найденное нами комплексное число F, разумеется, не настоящая сила, ибо физика не знает комплексных сил: все силы имеют только действительную часть, а мнимой части взяться просто неоткуда. Тем не менее мы будем говорить «сила» F0exp(iwt), хотя надо помнить, что речь идет лишь о действительной ее части.
Рассмотрим еще один пример. Как представить косинусоидальную волну, фаза которой сдвинулась на D? Конечно, как действительную часть F0exp[i((wt-D2)]; экспоненту в этом случае можно записать в виде exp[i(wt-D)]=ехр(iwt)exp(-iD). Алгебра экспонент гораздо легче алгебры синусов и косинусов; вот почему удобно использовать комплексные числа. Часто мы будем писать так:
Шляпка над буквой будет указывать, что мы имеем дело с комплексным числом, т. е.
Однако пора начать решать уравнения, используя комплексные числа, тогда мы увидим, как надо применять комплексные числа в реальных обстоятельствах. Для начала попытаемся решить уравнение
где F — действующая на осциллятор сила, а х — его смещение. Хотя это и абсурдно, предположим, что х и F — комплексные числа. Тогда х состоит из действительной части и умноженной на i мнимой части; то же самое касается и F. Уравнение (23.2) в этом случае означает
или
Комплексные числа равны, когда равны их действительные и мнимые части; следовательно, действительная, часть х удовлетворяет уравнению, в правой части которого стоит действительная часть силы. Оговорим с самого начала, что такое разделение действительных и мнимых частей возможно не всегда, а только в случае линейных уравнений, т. е. уравнений, содержащих х лишь в нулевой и первой степенях. Например, если бы уравнение содержало член lх2, то, сделав подстановку xr+ixt, мы получили бы l(xr+ixi)2, и выделение действительной и мнимой частей привело бы нас к l(х2r-x2i) и 2ilxrxi. Итак, мы видим, что действительная часть уравнения содержит в этом случае член -lx2i. Мы получили совсем не то уравнение, какое собирались решать.
Попытаемся применить наш метод к уже решенной задаче о вынужденных колебаниях осциллятора, т. е. об осцилляторе, на который действует внешняя сила. Как и раньше, мы хотим решить уравнение (23.2), но давайте начнем с уравнения