Выбрать главу

Другой мерой ширины резонанса может служить «доброт­ность» q=wo/g (чем уже резонанс, тем больше Q); если Q=1000, то по шкале частот ширина резонансной кривой равна всего 0,001. Резонансной кривой на фиг. 23.2 соответствует Q=5.

Явление резонанса важно потому, что оно проявляется доволь­но часто; описанию некоторых видов этих проявлений мы посвя­тим остаток главы.

§ 3. Электрический резонанс

Простейшие и самые широкие технические применения резо­нанс нашел в электричестве. Имеется довольно много устройств, из которых собираются электрические цепи. Их часто называют пассивными элементами цепи, и бывают они трех типов, хотя в каждый элемент одного типа всегда примешано чуточку эле­ментов других типов. Прежде чем подробно описать эти элементы, заметим, что наше представление о механическом осцилляторе как о массе, подвешенной к концу пружины, всего лишь приближение. В «массе» сосредоточена вовсе не вся масса системы: пружина тоже обладает какой-то массой, пружина тоже инерционна. Точно так же «пружина» не состоит из одной пружины, масса тоже немного упруга, а не абсолютно тверда, как это может показаться. Подпрыгивая вверх и вниз, она слегка изгибается под толчками пружины. Так же обстоит дело и в электричестве. Расположить все предметы по «элемен­там цепи» с чистыми, идеальными характеристиками можно только приближенно. Так как у нас нет времени обсуждать пре­делы таких приближений, мы просто предположим, что они до­пустимы.

Итак, о трех элементах цепи. Первый называется емкостью (фиг. 23.4); в качестве примера емкости могут служить две ме­таллические пластинки, разделенные тонким слоем диэлект­рика.

Фиг. 23.4. Три пассивных элемента цепи.

Если пластинки зарядить, то между ними возникает раз­ность потенциалов. Та же самая разность потенциалов будет между точками А и В, потому что при любой дополнительной разности потенциалов вдоль соединительных проводов заряды стекут по проводам. Таким образом, заданной разности потен­циалов V между пластинками соответствуют определенные заряды +q и -q на каждой пластинке. Между пластинками существует некое электрическое поле; мы даже вывели соответствующую формулу для него (см. гл. 13 и 14)

V=sd/e0=qd/e0A , (23.14)

где d расстояние между пластинками, А — площадь пласти­нок. Заметим, что разность потенциалов линейно зависит от за­ряда. Если построить емкость не из параллельных пластин, а придать отдельным электродам какую-нибудь другую форму, разность потенциалов будет по-прежнему пропорциональна заряду, но постоянную пропорциональности не так-то легко будет рассчитать. Однако надо знать только одно: разность по­тенциалов между концами емкости пропорциональна заряду V=q/C; множитель пропорциональности равен 1/С (С и есть емкость объекта).

Второй элемент цепи называется сопротивлением; этот эле­мент оказывает сопротивление текущему через него электриче­скому току. Оказывается, что все металлические провода, а так­же многие другие материалы сопротивляются току одинаково; если к концам куска такого материала приложить разность по­тенциалов, то электрический ток в куске I=dq/dt будет пропор­ционален приложенной разности потенциалов

V=RI=R(dq/dt). (23.15)

Коэффициент пропорциональности называют сопротивлением R. Соотношение между током и разностью потенциалов вам, на­верное, уже известно. Это закон Ома.

Если представлять себе заряд, сосредоточенный в емкости, как нечто аналогичное смещению механической системы х, то электрический ток dq/dt аналогичен скорости, сопротивление R аналогично коэффициенту сопротивления g, а 1/С аналогично постоянной упругости пружины k. Самое интересное во всем этом, что существует элемент цепи, аналогичный массе! Это спираль, порождающая внутри себя магнитное поле, когда через нее проходит ток. Изменение магнитного поля порождает на концах спирали разность потенциалов, пропорциональную dI/dt. (Это свойство спирали используется в трансформаторах.) Магнитное поле пропорционально току, а наведенная разность потенциалов (так ее называют) пропорциональна скорости из­менения тока