Выбрать главу

Другими словами, увеличив время на Dt, можно восста­новить значение a(t-r/с) добавлением отрезка Dr= сDt, т. е. поле распространяется со временем как волна, уходящая от источника. Вот почему иногда говорят, что свет движется как волна. Можно также сказать, что поле запаздывает во времени, или иначе, что поле распространяется вширь с течением вре­мени.

Фиг. 29.3. Электрическое поле как функция положения точки на­блюдения спустя некоторый про­межуток времени.

Множителем 1/r пренебрегаем.

Особый интерес представляет случай периодических коле­баний заряда q. В опыте, рассмотренном в гл. 28, смещение за­рядов x в момент t равнялось некоторой константе х0, амплитуде колебаний, умноженной на coswt. Ускорение в этом случае равно

(29.2)

Отвлечемся пока от угла q и постоянных и посмотрим, как ведет себя Е (29.3) в зависимости от времени или координат.

§ 2. Энергия излучения

Как мы уже говорили, в любой момент времени и в любой точке пространства напряженность поля меняется обратно пропорционально расстоянию r. Следует заметить, что энергия, несомая волной, и любые энергетические характеристики элек­трического поля пропорциональны квадрату поля. Пусть, на­пример, заряд или осциллятор находится в электрическом поле и под влиянием поля начинает двигаться. Для линейного осцил­лятора смещение, ускорение и скорость, возникающие под дей­ствием поля, прямо пропорциональны величине поля. Поэтому кинетическая энергия заряда пропорциональна квадрату поля. Мы примем, что энергия, которую поле может передать какой-либо системе, пропорциональна квадрату поля.

Отсюда следует, что энергия, получаемая в данном месте от источника поля, уменьшается по мере удаления от источника, точнее, она падает обратно пропорционально квадрату расстоя­ния. Существует очень простая интерпретация этого факта: соберем энергию волны, попадающую в конус с вершиной в ис­точнике, сначала на расстоянии r1 (фиг. 29.4), а затем на расстоя­нии r2; тогда количество энергии, падающее на единичную пло­щадку, обратно пропорционально квадрату расстояния r, а площадь поверхности внутри конуса растет прямо пропорцио­нально квадрату расстояния r от поверхности до вершины ко­нуса. Таким образом, на каком бы расстоянии от вершины конуса мы ни находились, энергия, проходящая внутри конуса, одна и та же! В частности, если окружить источник со всех сто­рон поглощающими осцилляторами, то полное количество энер­гии, поступающее в них от волны, будет постоянным, незави­симо от расстояния до источника.

Фиг. 29.4. Количество энергии, протекающей внутри конуса OABCD, не зависит от расстоя­ния r, на котором оно измеряется.

Закон спадания поля Е как 1/r эквивалентен утверждению, что имеется поток энергии, ко­торый нигде не теряется; при этом энергия распространяется на все большие и большие области пространства. Таким образом, заряд, колеблясь, безвозвратно теряет энергию, уходящую все дальше и дальше. Заряд не может вернуть излученную энергию с тех расстояний, где применимо наше рассмотрение; для доста­точно больших расстояний от источника вся излученная энер­гия уходит прочь. Конечно, энергия не исчезает бесследно и ее можно поглотить с помощью других систем. Потери энергии на излучение мы будем изучать в гл. 32.

Рассмотрим теперь более подробно волны вида (29.3) как функции времени в данном месте и как функции расстояния в данный момент времени. Как и раньше, будем отвлекаться от постоянных множителей и множителя 1/r.

§ 3. Синусоидальные волны.

Зафиксируем вначале r и рассмотрим поле как функцию времени. Получается функция, которая осциллирует с угловой частотой w. Угловую частоту со можно определить как скорость изменения фазы со временем (радианы в секунду). Эта величина нам уже знакома. Период есть время одного колебания, одного полного цикла; он равен 2p/w, так как произведение w и периода есть полный период косинуса.

Введем новую величину, которая очень часто используется в физике. Она возникает в другой ситуации, когда t фиксиро­вано и волна рассматривается как функция расстояния r. Легко увидеть, что как функция r волна (29.3) тоже осциллирует. Если отвлечься от множителя 1/r, то мы видим, что Е тоже осцилли­рует, когда мы меняем положение. Тогда по аналогии с w введем

так называемое волновое число и обозначим его через k. Оно опре­деляется как скорость изменения фазы с расстоянием (радианы на метр). Время при таком изменении остается фиксированным. Роль периода здесь играет другая величина, ее можно было бы назвать периодом в пространстве, однако ее обычное назва­ние — длина волны, а обозначается она буквой l. Длина волны есть расстояние, на котором колебание поля совершает один полный цикл. Легко видеть, что длина волны равна 2p/k,потому что k, умноженное на длину волны, равно полному периоду ко­синуса. Итак, соотношение kl=2p полностью аналогично

wt0=2p.

В нашем конкретном случае между частотой и длиной волны имеется определенная связь, однако приведенные выше опре­деления k и w носят совершенно общий характер и применимы также в тех физических условиях, когда никакого соотношения между этими величинами нет. Для рассматриваемой нами волны скорость изменения фазы с расстоянием найти легко. В самом деле, запишем выражение для фазы j=w(t-r/с) и возьмем частную производную по r

(29.4)

Это соотношение можно записать разными способами:

Почему длина волны оказывается равной периоду, умножен­ному на c? Очень просто. Дело в том, что за время, равное одному периоду, волны, двигаясь со скоростью с, пройдут расстояние ct0, а, с другой стороны, это расстояние должно быть равно длине волны.

В других физических явлениях, когда приходится иметь дело не со светом, такого простого соотношения между k и w может и не быть. Пусть волна движется вдоль оси x, тогда распространение синусоидальной волны с частотой w и волновым числом k описывается общей формулой вида sin(wt-kx).

Введенное понятие длины волны позволяет уточнить пределы применимости формулы (29.1). Напомним, что поле складывается из нескольких частей: одна из них спадает как 1/r, другая — как 1/r2, а остальные падают с расстоянием еще быстрее. Имеет смысл выяснить: когда часть, спадающая по закону 1/r, наибо­лее существенна, а остальными можно пренебречь? Естественно ответить: «Когда мы отойдем достаточно далеко от источника, потому что член 1/г2 будет мал по сравнению с членом 1/r». Но что значит «достаточно далеко»? В общих чертах ответ таков: все остальные члены имеют порядок величины l/rпо сравнению с первым членом 1/г. Так что когда мы находимся на расстоянии нескольких длин волн от источника, формула (29.1) описывает поле в хорошем приближении. Область, удаленную от источника на расстояние, превышающее несколько длин волн, иногда называют «волновой зоной».