Выбрать главу

Этот принцип фокусировки служит для наблюдения света звезд. При постройке большого 200-дюймового телескопа в об­серватории Паломар использовалась следующая идея. Вообразите себе звезду, удаленную от нас на миллиарды километров; мы хотим собрать весь испускаемый ею свет в фокус. Конечно, мы не можем начертить всю траекторию лучей до звезды, тем не менее мы должны проверить, насколько времена на различ­ных траекториях равны. Мы, конечно, знаем, что если множест­во различных лучей достигло плоскости КК', перпендикулярной направлению лучей, то времена для всех этих лучей будут равны (фиг. 26.12). Далее лучи должны отразиться от зеркала и за равные промежутки времени попасть в фокус Р'.

Фиг. 26 10. Фокусирующая опти­ческая система.

Фиг. 26.11. Эллиптическое зеркало.

Это означает, что мы должны найти такую кривую, для которой сумма рас­стояний ХХ'-\-Х'Р' будет постоянна, независимо от выбора точки X. Легче всего это сделать, продолжив отрезок XX' до плоскости LL'. Потребуем теперь, чтобы выполнялись соот­ношения А'А"=А'Р',В'В"=В'Р', С'С"=С'Р' и т. д.; в этом случае мы получаем нужную нам кривую, потому что сумма длин А 'А+А 'Р' =АА'+А 'А'' будет постоянной для всех точек кривой. Значит, наша кривая есть геометрическое место всех точек, равноудаленных от линии и некоторой заданной точки. Такая кривая называется параболой; вот зеркало телескопа и было изготовлено именно в форме параболы.

Приведенные примеры в общих чертах иллюстрируют прин­цип устройства оптических систем. Точные кривые можно рас­считать, используя правило равенства времен на всех путях, ведущих в точку фокуса, и требуя, чтобы время прохождения на всех соседних путях было большим.

В следующей главе мы еще вернемся к фокусирующим опти­ческим системам, а теперь обсудим дальнейшее развитие теории. Когда предлагается новый физический принцип, такой, как принцип наименьшего времени, то нашей первой естественной реакцией могли бы быть слова: «Все это очень хорошо, восхити­тельно, но вопрос заключается в том, улучшает ли это вообще наше понимание физики?». На это можно ответить: «Да. Посмот­рите сколько новых фактов мы теперь поняли!» А кто-то возра­зит: «Ну, в зеркалах я и так разбираюсь. Мне нужна такая кри­вая, чтобы каждая касательная к ней плоскость образовывала равные углы с двумя лучами света. Я могу рассчитать и линзу, потому что каждый падающий на нее луч отклоняется на угол, даваемый законом Снелла». Здесь очевидным образом содержа­ние принципа наименьшего действия совпадает с законом равен­ства углов при отражении и пропорциональности синусов углов при преломлении. Тогда, может быть, это философский вопрос, а может быть, вопрос просто в том, какой путь красивее? Можно привести аргументы в пользу обеих точек зрения.

Однако критерий важности всякого принципа состоит в том, что он предсказывает нечто новое.

Легко показать, что принцип Ферма предсказывает ряд но­вых фактов. Прежде всего предположим, что имеются три среды — стекло, вода и воздух и мы наблюдаем явление прелом­ления и измеряем показатель nдля перехода из одной среды в другую.

Фиг. 26.12. Параболическое зеркало.

Обозначим через n12 показатель преломления для пе­рехода из воздуха (1) в воду (2), а через n13— для перехода из воздуха (1) в стекло (3). Измерив преломление в системе вода— стекло, найдем еще один показатель преломления и назовем его п23 .Здесь заранее нет оснований считать, что n12 , n13 и n23 связаны между собой. Если же исходить из принципа наимень­шего времени, то такую связь можно установить. Показатель n12 есть отношение двух величин—скорости света в воздухе к скорости света в воде; показатель n13 есть отношение скорости в воздухе к скорости в стекле, а n23 есть отношение скорости в воде к скорости в стекле. Поэтому, сокращая скорость света в воздухе, получаем

(26.5)

Другими словами, мы предсказываем, что показатель преломле­ния для перехода из одного материала в другой можно получить из показателей преломления каждого материала по отношению к некоторой среде, скажем воздуху или вакууму. Таким обра­зом, измерив скорость света во всех средах, мы образуем одно число для каждой среды — показатель преломления для пере­хода из вакуума в среду — и называем его ni(например, ni для воздуха есть отношение скорости в воздухе к скорости в вакууме и т. д.), после чего легко написать нужную формулу. Показатель преломления для любых двух материалов i и j равен

(26.6)

Используя только закон Снелла, подобное соотношение пред­сказать невозможно. Но связь эта существует. Соотношение (26.5) известно давно и послужило сильным аргументом в поль­зу принципа наименьшего времени.

Еще одно предсказание принципа наименьшего времени со­стоит в том, что скорость света в воде при измерении должна оказаться меньше скорости света в воздухе. Это уже предсказа­ние совсем другого рода. Оно гораздо глубже, потому что носит теоретический характер и никак не связано с наблюдениями, из которых Ферма вывел принцип наименьшего времени (до сих пор мы имели дело только с углами). Как оказалось, скорость света в воде действительно меньше скорости в воздухе, и ровно настолько, чтобы получился правильный показатель преломле­ния.

§ 5, Более точная формулировка принципа Ферма

До сих пор мы фактически пользовались неправильной фор­мулировкой принципа наименьшего времени. Здесь мы сформу­лируем его более точно. Мы неправильно называли его принци­пом наименьшего времени и для удобства по ходу дела применя­ли неправильную его трактовку. Но теперь мы выясним точное содержание принципа. Пусть имеется зеркало. Мы его показали на

фиг. 26.3. Откуда свет знает, что он должен двигаться к зер­калу? Очевидно, путь, требующий наименьшего времени,— это линия АВ, Кое-кто поэтому может сказать: «Иногда этот путь требует как раз наибольшего времени». Так это неправильно! Путь по кривой наверняка займет еще больше времени! Точная формулировка принципа следующая: луч, проходящий по тра­ектории, обладает тем свойством, что любое малое изменение пути (скажем, на 1%), расположения точки падения луча на зеркало, или формы кривой, или какие-либо иные изменения, не приводит в первом порядке к изменению времени прохождения; изменение времени происходит только во втором порядке. Другими словами, согласно этому принципу, свет вы­бирает один путь из множества близлежащих, требующих почти одинакового времени для прохождения.

С принципом наименьшего времени связана еще одна труд­ность, которую многие, не любящие такого рода теории, никак не могут переварить. Теория Снелла помогает легко «понять» поведение света. Свет проходит, видит перед собой поверхность и отклоняется, потому что на поверхности с ним что-то происхо­дит. Легко понять идею причинности, проявляющуюся в том, что свет идет из одной точки в другую, а затем в следующую. Но принцип наименьшего времени есть философский принцип, ко­торый совсем иначе объясняет причину явлений в природе. Вместо причинной обусловленности, когда из одного нашего действия вытекает другое и т. д., этот принцип говорит следую­щее: в данной ситуации свет выбирает путь с наименьшим, или экстремальным временем. Но как удается свету выбирать свой