Фиг. 26.13, Прохождение радиоволн сквозь узкую щель.
путь? Вынюхивает он что ли соседние пути и сравнивает их потом друг с другом? В некотором смысле так и происходит. Эту способность света нельзя понять в рамках геометрической оптики, поскольку она связана с понятием длины волны; длина волны, грубо говоря, есть тот отрезок впереди лежащего пути, который свет может «почувствовать» и сравнить с соседними путями. Этот факт трудно продемонстрировать на опыте со светом, так как длина волны света чрезвычайно мала. Но радиоволны с длиной волны, скажем, 3 см, «видят» намного дальше. Предположим, имеется источник радиоволн, детектор и экран со щелью, как показано на фиг. 26.13; при этих условиях лучи будут проходить из S в D, поскольку это прямолинейная траектория, и даже если сузить щель, лучи все равно пройдут. Но если теперь отодвинуть детектор в точку D', то при широкой щели волны не пойдут из S в D', потому что они сравнят близлежащие пути и скажут: «Нет, друг мой, все эти пути требуют другого времени». С другой стороны, если оставить только узенькую щелку и таким образом помешать волнам выбирать путь, то окажутся годными уже несколько путей и волны пойдут по ним! Если щель узкая, в точку D' попадет больше излучения, чем через широкую щель! Такой же опыт возможен со светом, но в большом масштабе его проделать трудно. Этот эффект, однако, можно наблюдать в следующих простых условиях. Найдите маленький и яркий источник света, например уличный фонарь, где-нибудь в конце улицы или отражение солнца от колеса автомобиля. Поставьте перед глазами два пальца, оставив для света узенькую щель, и постепенно сближайте пальцы, пока щель полностью не исчезнет. Вы увидите, что свет, который вначале казался крохотной точкой, начнет расплываться и даже вытянется в длинную линию. Происходит это потому, что между пальцами оставлена лишь очень маленькая щель и свет не идет, как обычно, по прямой, а расходится под некоторым углом и в глаз попадает с разных направлений. Если вы будете достаточно внимательны, то заметите еще боковые максимумы и своеобразную кайму по краям.
Кроме того, само изображение будет окрашено. Все это будет в свое время объяснено, а сейчас этот опыт (а его очень легко проделать) просто демонстрирует, что свет не всегда распространяется по прямой.
§ 6. Квантовый механизм
В заключение дадим очень грубую картину того, что происходит на самом деле, как протекает весь процесс распространения света с квантовомеханической точки зрения, которую сейчас считают самой правильной (разумеется, наше описание будет носить лишь качественный характер). Исследуя свет на пути из А в В (см. фиг. 26.3), можно обнаружить, что он вовсе не представляет собой волны. Лучи света, оказывается, состоят из фотонов, которые можно реально зарегистрировать с помощью фотонного счетчика; они заставляют его щелкать. Яркость света пропорциональна среднему числу фотонов, пролетающему в 1 сек, а нас интересует вероятность попадания фотона из А в В при отражении от зеркала. Правило вычисления этой вероятности весьма необычно. Выберем какой-нибудь путь и найдем время на этом пути; затем образуем комплексное число или нарисуем маленький комплексный вектор rеiq, где угол q пропорционален времени. Число оборотов вектора в секунду — это частота света. Возьмем теперь другой путь, и пусть он занимает другое время; тогда соответствующий ему вектор повернется на угол, отличный от первого (вспомним, что угол всегда пропорционален времени). Переберем все возможные пути и сложим векторы для каждого из них, тогда квадрат длины суммарного вектора определит вероятность прохождения фотона из начальной точки в конечную!
Покажем теперь, что отсюда следует принцип наименьшего времени для зеркала. Возьмем все возможные пути ADB, АЕВ, АСВ и т. д., изображенные на фиг. 26.3. Путь ADB вносит небольшой вклад, а соседний путь АЕВ занимает уже другое время, и его угол q поэтому другой. Пусть точка С соответствует пути с наименьшим временем, тогда при небольшом изменении пути время не меняется. Точнее, сначала время заметно менялось, но с приближением к точке С оно меняется все меньше и меньше (фиг. 26.14). Таким образом, векторы, которые мы складываем, проходят вблизи С почти под одним и тем же углом, а затем времена начинают постепенно расти, векторы поворачиваются и т. д. В результате получается тугой клубок векторов. Полная вероятность есть расстояние от одного конца до другого, возведенное в квадрат. Почти весь вклад в эту суммарную вероятность вносит область, где векторы идут в одном направлении (с одной и той же фазой). Вклады от путей с разными временами взаимно сокращаются, потому что векторы направлены в разные стороны. Вот почему, если закрыть края зеркала, оно будет отражать почти точно так же, как и раньше, поскольку в приведенной выше процедуре это соответствует отбрасыванию части векторов внутри спиральных концов диаграммы, а для света это мало что изменит. Таково соответствие между современной теорией фотонов с ее понятием вероятности прохождения, зависящей от суммирования векторов, и принципом наименьшего времени.
*Его можно вывести, если дополнительно предположить, что при добавлении слоя одной среды к поверхности другой угол преломления на выходе из последней среды не меняется.
Глава 27
ГЕОМЕТРИЧЕСКАЯ ОПТИКА
§ 1 Введение
§ 2. Фокусное расстояние для сферической поверхности
§3. Фокусное расстояние линзы
§ 4. Увеличение
§ 5. Сложные линзы
§ 6. Аберрация
§ 7. Разрешающая способность
§ 1. Введение
В этой главе мы рассмотрим некоторые применения изложенных ранее принципов к устройству простейших оптических систем, используя приближение геометрической оптики. При конструировании многих оптических приборов это приближение оказывается особенно полезным. Геометрическая оптика и очень проста, и очень сложна. Я хочу этим сказать, что уже поверхностное изучение геометрической оптики в школе позволяет с помощью очень простых правил составлять грубые схемы приборов; если же мы хотим при этом учитывать искажения в линзах и прочие тонкости, то задача становится слишком сложной даже для студентов вашего курса! Если кому-нибудь действительно понадобится точно спроектировать линзу, учитывая аберрацию, то лучше всего обратиться к специальным руководствам или просто проследить путь лучей через разные поверхности (как это сделать — сказано в книгах) и, пользуясь законом преломления, определить направление вышедших из линзы пучков и выяснить, насколько хорошее изображение они создают. Считалось, что это слишком длинная процедура, но сейчас, когда мы вооружены вычислительными машинами, этот способ вполне хорош. Сформулировав задачу математически, легко подсчитать пути всех лучей. Словом, дело это простое и не требует новых принципов. Кроме того, законы и элементарной и специальной оптики фактически неприменимы в других областях, поэтому нам не было бы необходимости чересчур подробно изучать предмет, если бы не одно важное исключение.