Выбрать главу

Фиг. 26.13, Прохождение радио­волн сквозь узкую щель.

путь? Вынюхивает он что ли соседние пути и сравнивает их потом друг с другом? В некотором смысле так и происходит. Эту способность света нельзя понять в рамках геометрической оптики, поскольку она связана с понятием длины волны; длина волны, грубо говоря, есть тот отрезок впереди лежащего пути, который свет может «почувствовать» и сравнить с соседними путями. Этот факт трудно продемонстрировать на опыте со светом, так как длина волны света чрезвычайно мала. Но радио­волны с длиной волны, скажем, 3 см, «видят» намного даль­ше. Предположим, имеется источник радиоволн, детектор и экран со щелью, как показано на фиг. 26.13; при этих усло­виях лучи будут проходить из S в D, поскольку это прямо­линейная траектория, и даже если сузить щель, лучи все равно пройдут. Но если теперь отодвинуть детектор в точку D', то при широкой щели волны не пойдут из S в D', потому что они сравнят близлежащие пути и скажут: «Нет, друг мой, все эти пути требуют другого времени». С другой стороны, если оставить только узенькую щелку и таким образом по­мешать волнам выбирать путь, то окажутся годными уже несколько путей и волны пойдут по ним! Если щель узкая, в точку D' попадет больше излучения, чем через широкую щель! Такой же опыт возможен со светом, но в большом масштабе его проделать трудно. Этот эффект, однако, можно наблюдать в следующих простых условиях. Найдите маленький и яркий ис­точник света, например уличный фонарь, где-нибудь в конце ули­цы или отражение солнца от колеса автомобиля. Поставьте перед глазами два пальца, оставив для света узенькую щель, и посте­пенно сближайте пальцы, пока щель полностью не исчезнет. Вы увидите, что свет, который вначале казался крохотной точкой, начнет расплываться и даже вытянется в длинную линию. Про­исходит это потому, что между пальцами оставлена лишь очень маленькая щель и свет не идет, как обычно, по прямой, а рас­ходится под некоторым углом и в глаз попадает с разных направ­лений. Если вы будете достаточно внимательны, то заметите еще боковые максимумы и своеобразную кайму по краям.

Кроме того, само изображение будет окрашено. Все это будет в свое время объяснено, а сейчас этот опыт (а его очень легко проделать) просто демонстрирует, что свет не всегда распро­страняется по прямой.

§ 6. Квантовый механизм

В заключение дадим очень грубую картину того, что проис­ходит на самом деле, как протекает весь процесс распростра­нения света с квантовомеханической точки зрения, которую сейчас считают самой правильной (разумеется, наше описание будет носить лишь качественный характер). Исследуя свет на пути из А в В (см. фиг. 26.3), можно обнаружить, что он вовсе не представляет собой волны. Лучи света, оказывается, состоят из фотонов, которые можно реально зарегистрировать с помо­щью фотонного счетчика; они заставляют его щелкать. Яркость света пропорциональна среднему числу фотонов, пролетающему в 1 сек, а нас интересует вероятность попадания фотона из А в В при отражении от зеркала. Правило вычисления этой вероят­ности весьма необычно. Выберем какой-нибудь путь и найдем время на этом пути; затем образуем комплексное число или нари­суем маленький комплексный вектор rеiq, где угол q пропорционален времени. Число оборотов вектора в секунду — это частота света. Возьмем теперь другой путь, и пусть он занимает другое время; тогда соответствующий ему вектор повернется на угол, отличный от первого (вспомним, что угол всегда пропорциона­лен времени). Переберем все возможные пути и сложим векторы для каждого из них, тогда квадрат длины суммарного вектора определит вероятность прохождения фотона из начальной точки в конечную!

Покажем теперь, что отсюда следует принцип наименьшего времени для зеркала. Возьмем все возможные пути ADB, АЕВ, АСВ и т. д., изображенные на фиг. 26.3. Путь ADB вносит не­большой вклад, а соседний путь АЕВ занимает уже другое вре­мя, и его угол q поэтому другой. Пусть точка С соответствует пути с наименьшим временем, тогда при небольшом изменении пути время не меняется. Точнее, сначала время заметно менялось, но с приближением к точке С оно меняется все меньше и меньше (фиг. 26.14). Таким образом, векторы, которые мы скла­дываем, проходят вблизи С почти под одним и тем же углом, а затем времена начинают постепенно расти, векторы поворачива­ются и т. д. В результате получается тугой клубок векторов. Пол­ная вероятность есть расстояние от одного конца до другого, возведенное в квадрат. Почти весь вклад в эту суммарную вероятность вносит область, где векторы идут в одном направ­лении (с одной и той же фазой). Вклады от путей с разными временами взаимно сокращаются, потому что векторы направ­лены в разные стороны. Вот почему, если закрыть края зеркала, оно будет отражать почти точно так же, как и раньше, по­скольку в приведенной выше процедуре это соответствует от­брасыванию части векторов внутри спиральных концов диа­граммы, а для света это мало что изменит. Таково соответствие между современной теорией фотонов с ее понятием вероятности прохождения, зависящей от суммирования векторов, и принци­пом наименьшего времени.

*Его можно вывести, если дополнительно предположить, что при добавлении слоя одной среды к поверхности другой угол преломления на выходе из последней среды не меняется.

Глава 27

ГЕОМЕТРИЧЕСКАЯ ОПТИКА

§ 1 Введение

§ 2. Фокусное расстояние для сферической поверхности

§3. Фокусное расстояние линзы

§ 4. Увеличение

§ 5. Сложные линзы

§ 6. Аберрация

§ 7. Разрешающая способность

§ 1. Введение

В этой главе мы рассмотрим некоторые при­менения изложенных ранее принципов к уст­ройству простейших оптических систем, ис­пользуя приближение геометрической оптики. При конструировании многих оптических при­боров это приближение оказывается особенно полезным. Геометрическая оптика и очень про­ста, и очень сложна. Я хочу этим сказать, что уже поверхностное изучение геометрической оптики в школе позволяет с помощью очень простых правил составлять грубые схемы при­боров; если же мы хотим при этом учитывать искажения в линзах и прочие тонкости, то зада­ча становится слишком сложной даже для сту­дентов вашего курса! Если кому-нибудь дейст­вительно понадобится точно спроектировать линзу, учитывая аберрацию, то лучше всего обратиться к специальным руководствам или просто проследить путь лучей через разные поверхности (как это сделать — сказано в кни­гах) и, пользуясь законом преломления, опре­делить направление вышедших из линзы пучков и выяснить, насколько хорошее изображение они создают. Считалось, что это слишком длинная процедура, но сейчас, когда мы вооружены вычислительными машинами, этот способ вполне хорош. Сформулировав задачу матема­тически, легко подсчитать пути всех лучей. Словом, дело это простое и не требует новых принципов. Кроме того, законы и элементар­ной и специальной оптики фактически непри­менимы в других областях, поэтому нам не было бы необходимости чересчур подробно изучать предмет, если бы не одно важное исключение.