В выражении (28.3) имеется и ряд других членов. Вторым членом природа как бы учитывает запаздывание в первом грубом приближении. Это поправка к запаздывающему кулоновскому члену; она представляет собой произведение скорости изменения кулоновского поля и времени запаздывания. Но и это не все. Есть еще третий член — вторая производная по t единичного вектора, направленного к заряду. Этим исчерпывается формула; мы учли все вклады в электрическое поле от произвольно движущегося заряда.
Магнитное поле выражается следующим образом:
Все предыдущее мы написали, чтобы показать красоту природы и, в некотором смысле, могущество математики. Говоря откровенно, мы даже не пытаемся понять, почему столь значительные по содержанию формулы занимают так мало места, ведь в них содержится и принцип действия генераторов тока, и особенности поведения света — словом, все явления электричества и магнетизма. Конечно, для полноты картины нужно добавить еще кое-что о свойствах использованных материалов (свойствах вещества), которые пока не учтены в (28.3).
Заканчивая краткое описание представлений о мире в XIX веке, следует упомянуть еще об одном фундаментальном обобщении, к которому в большой степени причастен и Максвелл, а именно о единстве явлений механики и теплоты. Мы будем говорить об этом в ближайшем будущем.
В XX столетии обнаружили, что все законы динамики Ньютона неправильны, и чтобы уточнить их, воспользовались квантовой механикой. (Законы Ньютона справедливы для тел достаточно больших размеров.) Совсем недавно законы квантовой механики в совокупности с законами электромагнетизма послужили основой для открытия законов квантовой электродинамики. Кроме того, был открыт ряд новых явлений, и раньше других — явление радиоактивности, открытое Беккерелем в 1898 г. (он похитил его из-под самого носа у XX столетия). Явление радиоактивности послужило началом развития науки о ядрах, новых частицах и о взаимодействиях совсем другого рода — не гравитационных и не электрических. Все эти вопросы еще ждут своего разрешения.
Для уж очень строгих и образованных читателей (скажем, профессоров, которым случится читать эти строки) специально добавим: наше утверждение, что выражение (28.3) содержит все известное из электродинамики, не совсем точно. Существует вопрос, который так и не был разрешен к концу XIX столетия. Если попробовать вычислить поле, создаваемое всеми зарядами, включая и тот заряд, на который в свою очередь действует поле, то возникнут трудности при попытке определить, например, расстояние от заряда до него самого и последующей подстановке этой величины, равной нулю, в знаменатель. Как быть с той частью поля, которая создается зарядом и на него же действует, до сих пор не понятно. Оставим этот вопрос, загадка не разгадана до конца, и мы по возможности будем избегать говорить о ней.
§ 2. Излучение
Перейдем от общей картины мира к явлениям излучения. Прежде всего мы должны выбрать тот член в выражении (28.3), который спадает обратно пропорционально первой (а не второй!) степени расстояния. Оказывается, что этот член имеет столь простой вид, что если принять его в качестве закона поведения электрического поля, создаваемого движущимся зарядом на больших расстояниях, то можно излагать электродинамику и оптику на элементарном уровне. Мы временно примем этот закон без доказательства, а позже изучим его подробнее.
Первый член в правой части (28.3) явно обратно пропорционален второй степени расстояния; легко показать, что и второй член, дающий поправку на запаздывание для первого, меняется таким же образом. Весь интересующий нас эффект заключен в третьем члене, и в общем он не так уж сложен. Этот член говорит нам следующее: посмотрите на заряд и заметьте направление единичного вектора (конец вектора скользит по поверхности единичной сферы). По мере движения заряда единичный вектор крутится, и его ускорение есть именно то, что нам нужно. Вот и все. Итак,
Формула (28.5) выражает закон излучения, потому что единственный член, который она содержит, спадает обратно пропорционально расстоянию и, следовательно, доминирует на больших расстояниях от заряда. (Часть, меняющаяся обратно пропорционально квадрату расстояния, становится настолько малой, что не представляет интереса.)