Выбрать главу

В этой главе мы будем обсуждать те же вопросы, что и в предыдущей, но с большими математическими подробностями. Качественно мы уже показали, что поле излучения двух ис­точников имеет максимумы и минимумы, и те­перь наша задача — дать математическое, а не просто качественное описание поля.

Мы вполне удовлетворительно разобрали физический смысл формулы (28.6), рассмотрим теперь некоторые ее математические черты. Прежде всего поле заряда, движущегося вверх и вниз с малой амплитудой в направлении 0 от оси движения, перпендикулярно лучу зрения и лежит в плоскости ускорения и луча зрения (фиг. 29.1). Обозначим расстояние через r, тогда в момент времени t величина электрического поля равна

(29.1)

где a(t-r/с) — ускорение в момент времени (t-r/с), или запаздывающее ускорение.

Интересно нарисовать картину распреде­ления поля в разных случаях. Наиболее характерный множитель в формуле (29.1) — это a (t-r/с); чтобы его понять, возьмем простейший случай q = 90° и изобразим поле на графике.

Фиг. 29.1. Напряженность поля Е, создаваемая положительным зарядом с запаздывающим ускорением а'.

Фиг. 29.2. Ускорение некоторого заряда как функция времени.

Раньше мы были заняты вопро­сом, как ведет себя поле в данной фиксированной точке пространства с течением времени. Теперь посмотрим, как выглядит поле в разных точках пространства в один и тот же момент времени. Иначе говоря, нам нужен «моментальный сни­мок» поля, из которого будет ясно, каково оно в разных местах. Разумеется, картина распределения поля зависит от ускорения заряда. Зададим характер движения заряда: пусть сначала он покоится, затем внезапно начнет определенным образом уско­ряться (как показано на фиг. 29.2) и, наконец, остановится. Затем, чуть позже, измерим поле в разных точках пространства. Мы можем утверждать, что поле будет иметь вид, приведенный на фиг. 29.3. В самом деле, поле в каждой точке определяется ускорением заряда в предыдущий момент времени, причем под словом «предыдущий» понимается rсекунд назад. Чем дальше точка, тем более ранним моментом времени определяется для нее ускорение. Поэтому кривая на фиг. 29.3 в некотором смысле есть «обращенный» во времени график ускорения; время и расстояние отличаются постоянным множителем c, который часто выбирается равным единице. Этот факт легко заметить и в математической записи a(t-r/с). Ясно, что добав­ка интервала времени At и вычитание отрезка пути Dr=-cDt дают одну и ту же величину a(t-r/с).

Другими словами, увеличив время на Dt, можно восста­новить значение a(t-r/с) добавлением отрезка Dr= сDt, т. е. поле распространяется со временем как волна, уходящая от источника. Вот почему иногда говорят, что свет движется как волна. Можно также сказать, что поле запаздывает во времени, или иначе, что поле распространяется вширь с течением вре­мени.

Фиг. 29.3. Электрическое поле как функция положения точки на­блюдения спустя некоторый про­межуток времени.

Множителем 1/r пренебрегаем.

Особый интерес представляет случай периодических коле­баний заряда q. В опыте, рассмотренном в гл. 28, смещение за­рядов x в момент t равнялось некоторой константе х0, амплитуде колебаний, умноженной на coswt. Ускорение в этом случае равно

(29.2)

Отвлечемся пока от угла q и постоянных и посмотрим, как ведет себя Е (29.3) в зависимости от времени или координат.

§ 2. Энергия излучения

Как мы уже говорили, в любой момент времени и в любой точке пространства напряженность поля меняется обратно пропорционально расстоянию r. Следует заметить, что энергия, несомая волной, и любые энергетические характеристики элек­трического поля пропорциональны квадрату поля. Пусть, на­пример, заряд или осциллятор находится в электрическом поле и под влиянием поля начинает двигаться. Для линейного осцил­лятора смещение, ускорение и скорость, возникающие под дей­ствием поля, прямо пропорциональны величине поля. Поэтому кинетическая энергия заряда пропорциональна квадрату поля. Мы примем, что энергия, которую поле может передать какой-либо системе, пропорциональна квадрату поля.

Отсюда следует, что энергия, получаемая в данном месте от источника поля, уменьшается по мере удаления от источника, точнее, она падает обратно пропорционально квадрату расстоя­ния. Существует очень простая интерпретация этого факта: соберем энергию волны, попадающую в конус с вершиной в ис­точнике, сначала на расстоянии r1 (фиг. 29.4), а затем на расстоя­нии r2; тогда количество энергии, падающее на единичную пло­щадку, обратно пропорционально квадрату расстояния r, а площадь поверхности внутри конуса растет прямо пропорцио­нально квадрату расстояния r от поверхности до вершины ко­нуса. Таким образом, на каком бы расстоянии от вершины конуса мы ни находились, энергия, проходящая внутри конуса, одна и та же! В частности, если окружить источник со всех сто­рон поглощающими осцилляторами, то полное количество энер­гии, поступающее в них от волны, будет постоянным, незави­симо от расстояния до источника.