Фиг. 29.4. Количество энергии, протекающей внутри конуса OABCD, не зависит от расстояния r, на котором оно измеряется.
Закон спадания поля Е как 1/r эквивалентен утверждению, что имеется поток энергии, который нигде не теряется; при этом энергия распространяется на все большие и большие области пространства. Таким образом, заряд, колеблясь, безвозвратно теряет энергию, уходящую все дальше и дальше. Заряд не может вернуть излученную энергию с тех расстояний, где применимо наше рассмотрение; для достаточно больших расстояний от источника вся излученная энергия уходит прочь. Конечно, энергия не исчезает бесследно и ее можно поглотить с помощью других систем. Потери энергии на излучение мы будем изучать в гл. 32.
Рассмотрим теперь более подробно волны вида (29.3) как функции времени в данном месте и как функции расстояния в данный момент времени. Как и раньше, будем отвлекаться от постоянных множителей и множителя 1/r.
§ 3. Синусоидальные волны.
Зафиксируем вначале r и рассмотрим поле как функцию времени. Получается функция, которая осциллирует с угловой частотой w. Угловую частоту со можно определить как скорость изменения фазы со временем (радианы в секунду). Эта величина нам уже знакома. Период есть время одного колебания, одного полного цикла; он равен 2p/w, так как произведение w и периода есть полный период косинуса.
Введем новую величину, которая очень часто используется в физике. Она возникает в другой ситуации, когда t фиксировано и волна рассматривается как функция расстояния r. Легко увидеть, что как функция r волна (29.3) тоже осциллирует. Если отвлечься от множителя 1/r, то мы видим, что Е тоже осциллирует, когда мы меняем положение. Тогда по аналогии с w введем
так называемое волновое число и обозначим его через k. Оно определяется как скорость изменения фазы с расстоянием (радианы на метр). Время при таком изменении остается фиксированным. Роль периода здесь играет другая величина, ее можно было бы назвать периодом в пространстве, однако ее обычное название — длина волны, а обозначается она буквой l. Длина волны есть расстояние, на котором колебание поля совершает один полный цикл. Легко видеть, что длина волны равна 2p/k, потому что k, умноженное на длину волны, равно полному периоду косинуса. Итак, соотношение kl=2p полностью аналогично
wt0= 2p.
В нашем конкретном случае между частотой и длиной волны имеется определенная связь, однако приведенные выше определения k и w носят совершенно общий характер и применимы также в тех физических условиях, когда никакого соотношения между этими величинами нет. Для рассматриваемой нами волны скорость изменения фазы с расстоянием найти легко. В самом деле, запишем выражение для фазы j=w(t-r/с) и возьмем частную производную по r
Это соотношение можно записать разными способами:
Почему длина волны оказывается равной периоду, умноженному на c? Очень просто. Дело в том, что за время, равное одному периоду, волны, двигаясь со скоростью с, пройдут расстояние ct0 , а, с другой стороны, это расстояние должно быть равно длине волны.
В других физических явлениях, когда приходится иметь дело не со светом, такого простого соотношения между k и w может и не быть. Пусть волна движется вдоль оси x, тогда распространение синусоидальной волны с частотой w и волновым числом k описывается общей формулой вида sin(wt-kx).
Введенное понятие длины волны позволяет уточнить пределы применимости формулы (29.1). Напомним, что поле складывается из нескольких частей: одна из них спадает как 1/r, другая — как 1/r2, а остальные падают с расстоянием еще быстрее. Имеет смысл выяснить: когда часть, спадающая по закону 1/r, наиболее существенна, а остальными можно пренебречь? Естественно ответить: «Когда мы отойдем достаточно далеко от источника, потому что член 1/г2 будет мал по сравнению с членом 1/r». Но что значит «достаточно далеко»? В общих чертах ответ таков: все остальные члены имеют порядок величины l/r по сравнению с первым членом 1/г. Так что когда мы находимся на расстоянии нескольких длин волн от источника, формула (29.1) описывает поле в хорошем приближении. Область, удаленную от источника на расстояние, превышающее несколько длин волн, иногда называют «волновой зоной».