Фиг. 29.9. Геометрический способ сложения двух косинусоидальных волн.
Чертеж вращается со скоростью w против часовой стрелки.
Оба вектора вращаются с одинаковой угловой скоростью w, и их относительное расположение неизменно. Вся система вращается жестко, подобно твердому телу.
Горизонтальная проекция А2 равна A2cos(wt + j2). Из векторного анализа известно, что при сложении двух векторов по правилу параллелограмма образуется новый, результирующий вектор АR, причем
x-компонента его есть сумма х-компонент слагающих векторов. Отсюда получаем решение нашей задачи. Легко проверить, что получается правильный ответ в нашем частном случае a1=А2=А. Действительно, из фиг. 29.9 очевидно, что AR лежит посредине между a1 и А2 и составляет угол 1/2 (j2-j1) с каждым из них. Следовательно, AR = 2Аcos1/2 (j2-j1), что совпадает с прежним результатом. Кроме того, в случае А1-А2 фаза AR есть среднее от фаз a1 и А2. Для неравных A1 и А2 задача решается столь же просто. Мы можем назвать это геометрическим решением задачи.
Существует еще один метод решения задачи, его можно было бы назвать аналитическим. Вместо того чтобы рисовать схему, подобную приведенной на фиг. 29.9, напишем выражения, имеющие тот же смысл, что и чертеж, и сопоставим каждому вектору комплексное число. Действительные части этих комплексных чисел отвечают реальным физическим величинам. В нашем конкретном случае волны записываются следующим образом: A1ехр[i(wt+j1)] [действительная часть этого равна A1cos(wt+j1)] и A2ехр[i(wt-+j2)]. Сложим обе волны:
Задача, таким образом, решена, так как мы имеем окончательный результат в виде комплексного числа с модулем AR и фазой jR.
Для иллюстрации аналитического метода найдем амплитуду АR , т. е. «длину» R. «Длина» комплексного числа в квадрате есть само комплексное число, умноженное на сопряженное ему.
Комплексное сопряжение состоит в изменении знака i . Отсюда получаем
(С помощью формул тригонометрии легко установить совпадение получаемого результата с длиной AR на фиг. 29.9.)
Итак, суммарная интенсивность складывается из члена А12, возникающего от действия только первого источника, интенсивности А22, равной интенсивности второго источника, и еще дополнительного члена. Этот дополнительный член мы назовем эффектом интерференции. Он представляет собой разность между истинным результатом сложения и суммой интенсивностей. Интерференционный член может быть как положительным, так и отрицательным. [Интерференция (interference) в английской разговорной речи означает возражение, помеху, но в физике слова часто теряют первоначальный смысл и употребляются совсем в другом значении!] Если интерференционный член положителен, мы будем говорить о конструктивной интерференции (буквальный смысл этого выражения покажется ужасным всем, кроме физиков!). В противном случае мы говорим о деструктивной интерференции.
Посмотрим теперь, как применить нашу общую формулу (29.16) для сложения полей излучения двух осцилляторов к тем частным случаям, которые мы уже качественно обсуждали. Для этого необходимо лишь вычислить разность фаз j1 -j2 двух сигналов, приходящих в данную точку пространства. (Эффект, разумеется, связан с разностью фаз, а не с их абсолютными значениями.) Рассмотрим случай, когда два осциллятора с равными амплитудами и с относительной фазой колебаний а (когда колебания одного имеют фазу нуль, фаза другого равна а) расположены на расстоянии d друг от друга. Будем искать интенсивность под углом q к линии запад — восток. [Заметьте, что этот угол не имеет ничего общего с углом q в формуле (29.1).] Разность расстояний от точки Р до осцилляторов равна dsinq (фиг. 29.10), поэтому разность фаз, возникающая по этой причине, равна числу длин волн, заключенных на отрезке dsinq, умноженному на 2p.