Выбрать главу

Фиг. 29.10. Два осциллятора, обладающие одинаковой амплиту­дой и разностью фаз a.

(Более подготовленный читатель, вероятно, умножил бы волновое число k, т. е. скорость изменения фазы с расстояни­ем, на d sin 0, результат получится тот же самый.) Разность фаз, возникающая из-за разности хода лучей, есть, таким обра­зом, (2pdsinq)/l, но из-за относительного запаздывания осцилляторов возникает дополнительная разность фаз a. Отсюда пол­ная разность фаз двух волн в точке наблюдения равна

(29.17)

Это выражение охватывает все случаи. Теперь остается только подставить его в (29.16) и положить A12; получится фор­мула, с помощью которой можно вывести все результаты для двух антенн одинаковой интенсивности.

Рассмотрим частные случаи. Например, на фиг. 29.5 мы полагали, что интенсивность на угол 30° равна 2. Откуда это получается? Осцилляторы находятся на расстоянии X/2, следо­вательно, для угла 30° dsinq=l/4, отсюда j2-j1=2pl/4l=p/2 и интерференционный член равен нулю. (Происходит сло­жение двух векторов, направленных под углом 90" друг к дру­гу.) Сумма векторов есть гипотенуза прямоугольного равнобед­ренного треугольника, она в Ц2 раз больше каждой амплитуды. Следовательно, интенсивность в 2 раза больше интенсивности каждого источника в отдельности. Все остальные примеры исследуются точно таким же способом.

Глава 30

ДИФРАКЦИЯ

§ 1. Результирующее поле n одинаковых осцилляторов

§ 2. Дифракционная решетка

§ 3. Разрешающая способность дифракционной решетки

§ 4. Параболическая антенна

§ 5. Окрашенные пленки; кристаллы

§ 6. Дифракция на непрозрач­ном экране

§ 7. Поле системы осцилляторов, расположенных на плоскости

§ 1. Результирующее поле n одинаковых осцилляторов

Настоящая глава — непосредственное про­должение предыдущей, хотя название «Интерференция» здесь заменено словом «Дифракция». До сих пор никому не удалось удовлетворитель­ным образом определить разницу между дифрак­цией и интерференцией. Дело здесь только в привычке, а существенного физического раз­личия между этими явлениями нет. Единствен­ное, что можно сказать по этому поводу,— это следующее: когда источников мало, например два, то результат их совместного действия обыч­но называют интерференцией, а если источников много, то чаще говорят о дифракции. Поэтому мы не будем утруждать себя вопросом — ин­терференция это или дифракция, а просто про­должим наше обсуждение с того места, где мы остановились в предыдущей главе.

Обсудим теперь случай, когда имеется n осцилляторов, расположенных на равных рас­стояниях один от другого и обладающих рав­ными амплитудами, но разными фазами созда­ваемых ими полей. Разность фаз создается либо из-за выбора определенных фазовых сдвигов колебаний осцилляторов, либо потому, что мы находимся под углом к осцилляторам и возни­кает разность хода лучей. Независимо от при­чины возникновения разности фаз необходимо вычислить сумму такого вида:

где j — разность фаз соседних осцилляторов для некоторого направления лучей. В данном частном случае j=a+2pd1/2sinq. Вычислим сумму R. Для этого воспользуемся геометрическим способом сложения. Длина первого слагаемого А, а его фаза равна нулю; длина второго также А, а фаза его равна j. Следующее слагаемое имеет снова длину А и фазу, равную 2j, и т. д. В конце концов получается часть правильного много­угольника с n сторонами (фиг. 30.1).

Фиг. 30.1. Результирующая ам­плитуда шести аквидистантных источников при разности фаз j между каждыми двумя соседними источниками.

Вершины многоугольника лежат, конечно, на окружности, и чтобы легче было определить результирующую амплитуду, найдем радиус этой окружности. Пусть Q есть ее центр. Тогда угол OQS равен как раз фазе j (поскольку радиус QS образует с А2 такой же угол, как QO с a1). Следовательно, радиус r дол­жен удовлетворять равенству А = 2rsinj/2, откуда мы и на­ходим величину r. Далее, большой угол OQT равен nj; следо­вательно, AR=2rsinnj/2. Исключая из обоих равенств г, получаем