Но предположим, что источник расположен под небольшим углом 9 к вертикали. Тогда сигналы, принятые различными антеннами, будут немного сдвинуты по фазе. В приемнике все эти сигналы с разными фазами складываются, и мы ничего не получим, если только угол 6 достаточно велик. Но как велик должен быть этот угол? Ответ: мы получим нуль, если угол D/L=0 (см. фиг. 30.3) соответствует сдвигу фаз в 360°, т. е. если D равно длине волны l.
Этот результат легко понять, если учесть, что векторы, соответствующие сигналам от разных антенн, образуют замкнутый многоугольник и их сумма тогда обращается в нуль. Наименьший угол, который антенное устройство длиной L еще может разрешить, есть Q=l/L. Заметим, что кривая чувствительности антенны при приеме имеет точно такой же вид, как и распределение интенсивности, даваемое антеннами-передатчиками. Здесь проявляется так называемый принцип обратимости. Согласно этому принципу, для любых антенных устройств, при любых углах и т. п. справедливо правило: относительная чувствительность в разных направлениях совпадает с относительной интенсивностью для тех же направлений, если заменить приемник передатчиком.
Бывают антенные устройства и другого типа. Вместо того чтобы выстраивать целую систему диполей с кучей соединительных проводов между ними, можно расположить их по кривой, а приемник поставить в такую точку, где он мог бы фиксировать отраженные сигналы. Кривая выбирается с таким хитрым расчетом, чтобы все лучи от далекого источника после рассеяния доходили к приемнику за одно и то же время (см. фиг. 26.12). Значит, кривая должна быть параболой; тогда если источник находится на ее оси, то в фокусе возникает большая интенсивность рассеянного излучения. Легко найти разрешающую способность такого устройства. Расположение антенн по параболе здесь несущественно. Параболическая форма выбрана просто для удобства, она позволяет собирать все сигналы за одинаковое время и притом без проводов. Минимальный угол разрешения такого устройства по-прежнему равен q =l/L, где L — расстояние между крайними антеннами. Этот угол не зависит от промежутка между соседними антеннами, они могут быть размещены очень близко одна от другой, фактически вместо системы антенн можно даже взять сплошной кусок металла. В принципе это то же самое, что и зеркало телескопа. Итак, мы нашли разрешающую способность телескопа! (Иногда разрешающую способность пишут в виде q=1,22 l/L, где L — диаметр телескопа. Множитель 1,22 появляется по следующей причине: при выводе формулы q =l/L интенсивность всех диполей считалась одинаковой независимо от их положения, но, поскольку телескопы обычно делают круглыми, а не квадратными, интенсивность сигналов от краев меньше, чем от середины; в отличие от случая квадратного сечения края дают относительно малый вклад. Следовательно, эффективный диаметр короче истинного, что и учитывается множителем 1,22. На самом же деле такая точность в формуле для разрешающей способности кажется слишком педантичной.)
§ 5, Окрашенные пленки; кристаллы
Выше были рассмотрены некоторые эффекты, возникающие при интерференции нескольких волн. Но можно привести ряд других примеров, основной механизм которых слишком сложен, чтобы говорить о нем в данный момент (мы обсудим его впоследствии), а пока разберем возникающие в этих примерах интерференционные явления.
Например, когда свет падает на поверхность среды с показателем преломления n по нормали к поверхности, то часть света отражается. Причину отражения сейчас нам было бы трудно понять; мы поговорим о ней позже. Сейчас же предположим, что факт отражения света при входе и выходе света из преломляющей среды нам уже известен. Тогда при отражении света от тонкой пленки возникнет совокупность двух волн, отраженных от передней и задней поверхностей пленки; при достаточно малой толщине пленки эти волны будут интерферировать, усиливая или ослабляя друг друга в зависимости от знака разности фаз. Например, может случиться, что красный свет будет отражаться с усилением, а синий свет, который имеет другую длину волны,—с ослаблением, так что отраженный луч будет иметь яркую красную окраску.