Выбрать главу

Если мы изменим толщину пленки и бу­дем наблюдать отражение, скажем, в тех местах, где пленка по­толще, то сможем увидеть обратную картину, т. е. красные волны будут ослабляться, а синие нет, и пленка будет казаться синей, или зеленой, или желтой, в общем любого цвета. Таким образом, мы видим тонкую пленку окрашенной, а если будем смотреть на нее под другим углом, то расцветка будет иной, так как время прохождения света через пленку меняется с измене­нием угла зрения. Так становится понятной причина возникно­вения сложной цветовой гаммы на пленках нефти, мыльных пу­зырях и во многих других подобных случаях. Сущность явле­ния всюду одна — сложение волн с разными фазами.

Отметим еще одно важное применение дифракции. Возьмем дифракционную решетку и спроектируем ее изображение на экран. Для монохроматического света в определенных местах экрана возникнут максимумы — основные и более высоких по­рядков. По расположению максимумов и длине волны можно найти расстояние между линиями решетки. А по отношению интенсивностей различных максимумов можно найти форму штри­хов решетки и различить пиловидную, прямолинейную и раз­ные другие формы, даже не глядя на решетку. Этот принцип служит для определения положения атомов в кристалле. Един­ственная сложность состоит в том, что кристалл трехмерен; он представляет собой периодическую трехмерную решетку, составленную из атомов. Мы не можем использовать здесь ви­димый свет, потому что длина волны источника должна быть меньше расстояния между атомами, иначе никакого эффекта не будет; следовательно, нужно взять излучение с очень малыми длинами волн, т. е. рентгеновские лучи. Итак, освещая кристалл рентгеновскими лучами и найдя интенсивности максимумов раз­ного порядка, можно определить расположение атомов в кри­сталле, даже не имея возможности увидеть все это собственными глазами! Именно таким путем было найдено расположение ато­мов в разных веществах. В гл. 1 мы привели несколько схем, показывающих размещение атомов в кристалле соли и ряде дру­гих веществ. Мы еще вернемся к этому вопросу в дальнейшем и обсудим его подробно, а пока не будем заниматься этой интерес­нейшей проблемой.

§ 6. Дифракция на непрозрачном экране

Рассмотрим сейчас весьма интересное явление. Пусть имеет­ся непрозрачный лист с отверстиями, и по одну сторону от него расположен источник света. Нас интересует, какое изображение возникнет на экране по другую сторону листа. Каждый скажет, что свет пройдет через отверстия и создаст на экране какое-то изображение. Оказывается, что это изображение можно полу­чить с хорошей степенью точности, если предположить, что источники света равномерно распределены по ширине отверстий, а фазы источников точно такие, как если бы непрозрачного листа вовсе не было. Источников в отверстиях на самом деле, конечно, нет; во всяком случае, это как раз то место, где их наверняка не может быть. Тем не менее правильная дифракционная кар­тина получается, если считать, что источники расположены именно в отверстиях; факт довольно странный. Позже мы объяс­ним, почему такое предположение правильно, а пока примем его на веру.

В теории дифракции есть один род дифракционных явлений, который стоит кратко обсудить. Речь идет о дифракции на не­прозрачных экранах. Обычно в элементарных курсах о них го­ворят гораздо позже, так как для их объяснения нужно исполь­зовать довольно сложные формулы суммирования малых векторов. В остальном эти явления не отличаются от уже рас­смотренных нами. Все интерференционные явления по сущест­ву одинаковы; в них не входят сколько-нибудь сложные понятия, только условия возникновения могут быть более сложными, и тогда векторы поля труднее складывать, вот и все.

Предположим, что свет приходит из бесконечности, попадает на предмет и отбрасывает от него тень. На фиг. 30.7 изображен экран, на который свет отбрасывает тень от предмета АВ, при­чем источник света удален на расстояние, много большее длины волны. Казалось бы, вне тени интенсивность света максимальна, а внутри должна быть полная темнота. На самом же деле, если откладывать интенсивность как функцию расстояния до края тени, интенсивность будет сначала расти, а затем начнет спа­дать, колеблясь самым прихотливым образом вблизи края тени (фиг. 30.8). Посмотрим, отчего это происходит. Для объяснения воспользуемся недоказанной нами теоремой, что вместо истинной картины опыта можно ввести эффективные источники, равно­мерно распределенные вне объекта картины опыта можно ввести эффективные источники, равно­мерно распределенные вне объекта.