Выбрать главу

(31.5)

Эту формулу можно переписать еще и по-другому:

(31.6)

откуда заключаем, что поле за пластинкой получается умноже­нием поля, которое было бы при отсутствии пластинки (т. е. Es), на ехр[-iw(n-1)Dz/c]. Как мы знаем, умножение осцилли­рующей функции типа eiwt на еiq означает изменение фазы коле­баний на угол q, возникающее из-за задержки при прохождении пластинки. Фаза запаздывает на величину w(n-1)Dz/c (именно запаздывает, поскольку в экспоненте стоит знак минус).

Мы говорили раньше, что пластинка добавляет поле Еа к первоначальному полю ES=E0ехр[iw(t-z/c)], а вместо этого нашли, что действие пластинки сводится к умножению поля на фактор, сдвигающий фазу колебаний. Однако здесь нет противоречия, поскольку тот же результат можно получить, приба­вив подходящее комплексное число. Это число особенно просто найти для малых Dz, так как ех при малых x с большой точностью равно (1+x).

Фиг. 31.3. Построение вектора поля прошедшей через материал волны при некоторых значениях t и z.

Тогда можно записать

(31.7)

Подставляя это равенство в (31 6), получаем

(31.8)

Первый член в этом выражении есть просто поле источника, а второй следует приравнять Еа — полю, создаваемому осцилли­рующими зарядами пластинки справа от нее. Поле Еа выражено здесь через показатель преломления n; оно, разумеется, зависит от напряженности поля источника.

· · ·

Смысл сделанных преобразований легче всего понять с по­мощью диаграммы комплексных чисел (см. фиг. 31.3). Отло­жим сперва Es (z и t выбраны на рисунке такими, что Es лежит на действительной оси, но это не обязательно). За­держка при прохождении пластинки приводит к запаздыва­нию фазы Es, т. е. поворачивает Es на отрицательный угол. Это все равно, что добавить малый вектор Еа, направленный почти под прямым углом к Es. Именно такой смысл имеет множитель (-i) во втором члене (31.8). Он означает, что при действитель­ном Es величина Еа отрицательная и мнимая, а в общем случае Es и Ёа образуют прямой угол.

§ 2. Поле, излучаемое средой

Мы должны теперь выяснить, имеет ли поле осциллирующих зарядов в пластинке тот же вид, что и поле Еа во втором члене (31.8). Если это так, то тем самым мы найдем и показатель пре­ломления n [поскольку n — единственный фактор в (31.8), не выражающийся через фундаментальные величины]. Вернемся теперь к вычислению поля Еа , создаваемого зарядами пластин­ки. (Для удобства мы выписали в табл. 31.1 обозначения, которы­ми мы уже пользовались, и те, которые нам понадобятся в дальнейшем.)

Таблица 31.1 ● обозначения которыми мы пользуемся

ПРИ ВЫЧИСЛЕНИИ _______

Es поле, создаваемое источником

Еа поле, создаваемое зарядами пластинки

Dz толщина пластинки

z расстояние по нормали к пластинке

n показатель преломления

w частота (угловая) излучения

N число зарядов в единице объема пластинки

h число зарядов на единицу площади пластинки

qе заряд электрона

m масса электрона

w0 резонансная частота электрона, связанного в атоме

Если источник S (на фиг. 31.1) находится слева на достаточно большом расстоянии, то поле Es имеет одинаковую фазу по всей длине пластинки, и вблизи пластинки его можно записать в виде

(31.9)

На самой пластинке в точке z=0 мы имеем

(31.10)

Это электрическое поле воздействует на каждый электрон в атоме, и они под действием электрической силы qE будут коле­баться вверх и вниз (если e0 направлено вертикально). Чтобы найти характер движения электронов, представим атомы в виде маленьких осцилляторов, т. е. пусть электроны упруго соеди­нены с атомом; это значит, что смещение электронов из нормаль­ного положения под действием силы пропорционально величине силы.