Выбрать главу

Наблюдение подобных спектральных линий солнечного света позволяет установить резонансные частоты атомов, а следова­тельно, и химический состав солнечной атмосферы. Точно так же по спектру звезд узнают состав звездного вещества. С по­мощью этих методов обнаружили, что химические элементы на Солнце и звездах не отличаются от земных.

§ 5. Энергия световой волны

Как мы видели, мнимая часть показателя преломления ха­рактеризует поглощение. Попробуем теперь вычислить энергию, переносимую световой волной. Мы высказали соображения в пользу того, что энергия световой волны пропорциональна Е2, среднему по времени от квадрата электрического поля волны. Ослабление электрического поля за счет поглощения волны должно приводить к потере энергии, переходящей в какое-то трение электронов и в конечном счете, как нетрудно догадаться, в тепло.

Взяв часть световой волны, падающую на единичную пло­щадку, например на квадратный сантиметр поверхности нашей пластинки на фиг. 31.1, можно записать энергетический баланс в следующей форме (мы предполагаем, что энергия сохраняется!):

Падающая энергия в 1 сек = Выходящая энергия в 1 сек+Работа, совершаемая в 1 сек. (31.23)

Вместо первого члена можно написать аЕ2s, где а — коэффициент пропорциональности, связывающий среднее значение Е2 с энер­гией, переносимой волной. Во втором члене необходимо вклю­чить поле излучения атомов среды, т. е. мы должны записать

а (Еs+Ea)2 или (раскладывая квадрат суммы) a (E2s+2EsEa +-Е2а).

Все наши вычисления проводились в предположении, что

толщина слоя материала мала и показатель преломления его

незначительно отличается от единицы, тогда Еа оказывается много меньше Es (это было сделано с единственной целью — упростить вычисления). В рамках нашего приближения член

Е2а следует опустить, пренебрегая им по сравнению с EsEa . Вы можете на это возразить: «Тогда нужно отбросить и EsEa, потому что этот член много меньше El». Действительно, EsEa

много меньше Е2s, но если мы выбросим этот член, то получим приближение, в котором эффекты среды не учитываются совсем! Правильность наших вычислений в рамках сделанного прибли­жения проверяется тем, что мы всюду оставляли члены, пропор­циональные —NDz (плотности атомов в среде), но выбрасывали члены порядка (NDz)2 и более высоких степеней по NDz. Наше приближение можно было бы назвать «приближением малой плотности».

Заметим, кстати, что наше уравнение баланса энергии не содержит энергии отраженной волны. Но так и должно быть, потому что амплитуда отраженной волны пропорциональна NDz, а энергия пропорциональна (NDz)2.

Чтобы найти последний член в (31.23), нужно вычислить работу, совершаемую падающей волной над электронами за 1 сек. Работа, как известно, равна силе, умноженной на расстоя­ние; отсюда работа в единицу времени (называемая также мощ­ностью) дается произведением силы на скорость. Точнее, она равна F·v, но в нашем случае сила и скорость имеют одинако­вое направление, поэтому произведение векторов сводится к обычному (с точностью до знака). Итак, работа, совершаемая в 1 сек над каждым атомом, равна qeEsv. Поскольку на единичную площадку приходится NDz атомов, последний член в уравнении (31.23) оказывается равным NDzqeEsv. Уравнение баланса энер­гии принимает вид

(31.24)

Члены aE2S сокращаются, и мы получаем

(31.25)

Возвращаясь к уравнению (30.19), находим Еа для больших z:

(31.26)

(напомним, что h=NDz). Подставляя (31.26) в левую часть равенства (31.25), получаем

Ho Es (в точке z) равно Es (в точке атома) с запаздыванием на z/c. Поскольку среднее значение не зависит от времени, оно не изменится, если временной аргумент запаздывает на z/c, т. е. оно равно Es (в точке атома)·v, но точно такое же среднее значение стоит и в правой части (31.25). Обе части (31.25) будут равны, если выполняется соотношение

(31.27)

Таким образом, если справедлив закон сохранения энергии, то количество энергии электрической волны, приходящееся на единичную площадку в единицу времени (то, что мы называем интенсивностью), должно быть равно e0сЕ2. Обозначив интен­сивность через S, получим