Выбрать главу

Посмотрим, что дает формула (32.5) для осциллирующей системы, для которой ускорение а' имеет вид w2x0еiwt. Сред­нее за период от квадрата ускорения равно (при возведении

в квадрат надо помнить, что на самом деле вместо экспоненты должна входить ее действительная часть — косинус, а среднее от cos2wt дает l/2):

(32.6)

Эти формулы были получены сравнительно недавно — в начале XX века. Это замечательные формулы, они имели огромное историческое значение, и о них стоило бы почи­тать в старых книгах по физике. Правда, там использовалась другая система единиц, а не система СИ. Однако в конечных результатах, относящихся к электронам, эти осложнения можно исключить с помощью следующего правила соответствия: вели­чина q2e/4pe0, где qе — заряд электрона (в кулонах), раньше записывалась как е2. Легко убедиться, что в системе СИ значе­ние е численно равно 1,5188·10-14, поскольку мы знаем, что

qe= 1,60206·10-19 и 1/4pe0= 8,98748·109. В дальнейшем мы будем часто пользоваться удобным обозначением

(32.7)

Если это численное значение e подставить в старые формулы, то все остальные величины в них можно считать опре­деленными в системе СИ. Например, формула (32.5) прежде имела вид Р = 2/3е2а23. А потенциальная энергия прото­на и электрона на расстоянии r есть q2e/4pe0r или е2/r, где е=1,5188-10-14 ед. СИ.

§ 3. Радиационное затухание

Заряд, закрепленный на пружине с собственной частотой w0 (или электрон в атоме), даже в абсолютно пустом простран­стве не сможет колебаться бесконечно долго, поскольку, колеб­лясь, он теряет энергию на излучение. Никаких сил сопротив­ления в обычном смысле этого слова, никакой вязкости здесь нет. Но колебания не будут происходить «вечно», вследствие излучения они будут медленно замирать. А насколько медленно? Определим для осциллятора величину Q, вызванную так назы­ваемым радиационным сопротивлением или радиационным зату­ханием. Для любой колеблющейся системы величина Q равна энергии системы в данный момент времени, деленной на потери энергии, отнесенные к 1 рад:

Если Q задано, то легко получить закон спадания энергии колебаний: dW/dt = (-w/Q)W, откуда следует W =W0e-wt/Q; здесь W0 — начальная энергия (при t = 0).

Чтобы найти Q для излучающего осциллятора, вернемся к формуле (32.8) и подставим вместо dW/dt выражение (32.6).

А что нужно взять в качестве энергии W осциллятора? Кине­тическая энергия осциллятора равна 1/2mv2, а средняя кинети­ческая энергия равна mш2x20/4. Но мы помним, что полная энер­гия осциллятора равна средней кинетической плюс средняя потенциальная, причем обе они для осциллятора равны; поэтому полная энергия равна

(32.9)

Какую частоту следует подставить в наши формулы? Мы возь­мем собственную частоту w0, потому что практически это и есть частота излучения атома, а вместо m подставим me . После ряда сокращений эта формула приводится к виду

(32.10)

(Для большей ясности и из соображений близости к исторически принятой форме мы ввели величину е2 = q2e/4pe0 и записали 2p/l вместо w0/с.) Поскольку величина Q безразмерна, множи­тель е2/mес2, зависящий только от массы и заряда электрона и выражающий его внутренние свойства, обязан иметь размер­ность длины. Он был назван классическим радиусом электрона, потому что в старых моделях электрона радиационное сопротив­ление пытались объяснить действием одной части электрона на другие его части, для чего размеры электрона приходилось вы­бирать порядка e2/mec2. Но эта величина потеряла свой прежний смысл, и никто теперь не считает, что электрон имеет такой

радиус. Численное значение классического радиуса электрона следующее:

(32.11)

Вычислим теперь значение Q для атома, излучающего ви­димый свет, например для атома натрия. Длина волны излу­чения натрия равна примерно 6000 Е и находится в желтой части спектра; эта величина довольно типична. Отсюда