Имеются еще более сложные формулы, которые могут нам помочь в тех редких случаях нашей жизни, когда нам почему-то нужно проследить путь света через пять поверхностей. Однако если уж это необходимо, то лучше последовательно перебрать пять поверхностей, чем запоминать кучу формул, ведь может случиться, что нам вообще не придется возиться с поверхностями!
Во всяком случае, принцип расчета таков: при переходе через одну поверхность мы находим новое положение, новую точку фокуса и рассматриваем ее как источник для следующей поверхности и т. д.
Фиг. 27.5. Построение изображения, даваемого двусторонней линзой.
Фиг. 27.6. Тонкая линза с двумя положительными радиусами кривизны.
Часто в системах бывает несколько сортов стекла с разными показателями n1, n2, ...; поэтому для конкретного решения задачи нам нужно обобщить формулу (27.3) на случай двух разных показателей n1 и n2. Нетрудно показать, что обобщенное уравнение (27.3) имеет вид
Особенно прост случай, когда поверхности близки друг к другу и ошибками
из-за конечной толщины можно пренебречь. Рассмотрим линзу, изображенную на фиг. 27.6, и поставим такой вопрос: каким условиям должна удовлетворять линза, чтобы пучок из О фокусировался в О'? Пусть свет проходит точно через край линзы в точке Р. Тогда (пренебрегая временно толщиной линзы Т с показателем преломления n2) излишек времени на пути ОРО' будет равен (n1/i2/2s)+(n1h2/2s'). Чтобы уравнять время на пути ОРО' и время на прямолинейном пути, линза должна обладать в центре такой толщиной Т, чтобы она задерживала свет на нужное время. Поэтому толщина линзы Т должна удовлетворять соотношению:
Можно еще выразить Т через радиусы обеих поверхностей RI и R2. Учитывая условие 3 (приведенное на стр. 27), мы находим для случая R1<R2 (выпуклая линза)
Отсюда получаем окончательно
Отметим, что, как и раньше, когда одна точка находится на бесконечности, другая будет расположена на расстоянии, которое
мы называем фокусным расстоянием f. Величина f определяется равенством
где n=n2/n1
В противоположном случае, когда s стремится к бесконечности, s' оказывается на фокусном расстоянии /'. Для нашей линзы фокусные расстояния совпадают. (Здесь мы встречаемся еще с одним частным случаем общего правила, по которому отношение фокусных расстояний равно отношению показателей преломления тех двух сред, где лучи фокусируются. Для нашей оптической системы оба показателя одинаковы, а поэтому фокусные расстояния равны.)
Забудем на время формулу для фокусного расстояния. Если вы купили линзу с неизвестными радиусами кривизны и каким-то показателем преломления, то фокусное расстояние можно просто измерить, собирая в фокус лучи, идущие от удаленного источника. Зная f, удобнее переписать нашу формулу сразу в терминах фокусного расстояния:
Давайте посмотрим теперь, как работает эта формула, и что из нее получается в разных случаях. Во-первых, если одно из расстояний s и s' бесконечно, другое равно f. Это условие означает, что параллельный пучок света фокусируется на расстоянии / и может использоваться на практике для определения f. Интересно также, что обе точки движутся в одну сторону. Если одна идет направо, то и вторая движется в ту же сторону. И наконец, если s и s' одинаковы, то каждое из них равно 2f.
§ 4. Увеличение
До сих пор мы рассматривали процесс фокусировки только для точек, лежащих на оси. Построим теперь изображение объектов, несколько смещенных в сторону от оси; это поможет нам понять явление увеличения. Если с помощью линзы сфокусировать свет от небольшой нити на экран, то мы увидим изображение той же нити, только несколько большего или меньшего размера по сравнению с настоящей. Отсюда мы заключаем, что свет попадает в фокус от каждой точки нити. Чтобы получше в этом разобраться, рассмотрим линзу, схематически изображенную на фиг. 27.7. Нам известно, следующее:
1) каждый луч, параллельный оси, фокусируется по другую сторону линзы в точке, называемой фокусом и расположенной на расстоянии f от линзы;
2) каждый луч, приходящий из фокуса по одну сторону линзы, выходит с другой стороны параллельно оси.