Выбрать главу

(32.12)

т. е. для атомов Q порядка 108. Это значит, что атомный осциллятор колеблется 108 рад, или примерно 107 периодов, прежде чем его энергия уменьшится в 1раз. Частота колебаний света v = с/l при длине волны 6000 Е составляет 1015 гц, а, следовательно, время жизни, т. е. время, за которое энер­гия уменьшится в Не раз, есть величина порядка 10-8сек.

Примерно за такое же время высвечиваются свободные атомы в обычных условиях. Проведенная оценка справедлива только для атомов в пустом пространстве, не подверженных никаким внешним воздействиям. Если электрон находится в твердом теле, он сталкивается с другими атомами и электро­нами, и тогда возникает добавочное сопротивление и затухание будет другим.

Величина эффективного сопротивления у, определяющая сопротивление осциллятора, может быть найдена из соотноше­ния 1/Q=g/wo; вспомним, что именно y определяет ширину резо­нансной кривой (см. фиг. 23.2) . Итак, мы вычислили шири­ны спектральных линий для свободно излучающих атомов! Из равенства l=2pc/w получаем

§ 4. Независимые источники

Прежде чем перейти ко второй теме этой главы — рассея­нию света, обсудим частный случай явления интерференции, который мы до сих пор не рассматривали. Речь пойдет о таком случае, когда интерференция не возникает. Пусть имеются два источника S1 и S2 с амплитудами поля a1 и A2 . Излучение регистрируется в некоторой точке, в которую оба луча приходят с фазами j1 и j2 (фазы зависят от истинного момента излучения и времени запаздывания, являющегося функцией точки на­блюдения).

Наблюдаемая интенсивность излучения получается сложе­нием двух комплексных векторов с модулями a1 и A2 и фазами j1 и j2 (как в гл. 30) и возведением в квадрат; таким образом, энергия пропорциональна

Если бы не было перекрестного члена 2A1A2cos(j1-j2), пол­ная энергия в данном направлении была бы равна сумме энер­гий A12+A22; излучаемых по отдельности каждым источником, что соответствует нашим обычным представлениям. Иначе говоря, интенсивность света, падающего на предмет от двух источников, совпала бы с суммой интенсивностей обоих источ­ников. С другой стороны, если оставить перекрестный член, суммы интенсивностей не получится, потому что возникнет ин­терференция. В тех случаях, когда перекрестный член роли не играет, интерференция, казалось бы, отсутствует. Фактически же она возникает всегда, но подчас ее не удается наблюдать.

Приведем несколько примеров. Пусть два источника нахо­дятся друг от друга на расстоянии 7 000 000 000 длин волн, что, в общем, вполне осуществимо. Тогда в некотором фиксиро­ванном направлении разность фаз принимает вполне определен­ное значение. Но если сдвинуться от этого направления хоть на волосок, скажем на несколько длин волн (совсем пустячное расстояние: зрачок нашего глаза настолько велик, что действие лучей можно усреднять на расстояниях, много больших длины волны), то разность фаз станет другой и значение косинуса резко изменится. При вычислении средней интенсивности в ма­ленькой области пространства косинус в точках этой области будет все время колебаться — плюс, минус, плюс, минус — и при усреднении даст нуль.

Итак, усреднение по области, в которой фаза быстро меня­ется от точки к точке, обращает интерференционный член в нуль.

Другой пример. Предположим, что два источника колеб­лются и излучают радиоволны независимо друг от друга, т. е. они представляют собой не один осциллятор, питающийся от двух проводов (благодаря чему разность фаз остается постоян­ной), а именно два независимых источника. И пусть источники не настроены точно на одну и ту же частоту (равенства частот очень трудно достигнуть, если не соединять источники в одной цепи). Именно при этих условиях мы и будем называть источ­ники независимыми. Естественно, что из-за сдвига по частоте фазы источников будут различаться, даже если вначале они и совпадали: одна из фаз начнет опережать другую и очень скоро источники окажутся в противофазе, а при дальнейшем опере­жении фазы снова сравняются и т. д. Разность фаз источников будет, таким образом, дрейфовать со временем, но при измере­ниях в течение больших промежутков времени приборы не смо­гут уследить за ними, так как подъемы и спады интенсивности, похожие на «биения» звука, происходят слишком быстро. Мы должны усреднить по промежутку времени наблюдения, но при этом интерференционный член снова выпадает.