Другими словами, при усреднении по разности фаз интерференционный член обращается в нуль!
Имеется много книг по физике, в которых утверждается, что два различных источника света никогда не интерферируют. Это утверждение не отражает физического закона, а просто характеризует ту чувствительность экспериментальной техники, которая существовала к моменту написания книги. В источнике же света происходит следующее: сначала излучает один атом, затем другой и т. д. Как мы показали выше, атомы излучают последовательность волн за время около 10-8 сек; через 10-8 сек какой-то атом высвечивается, его место занимает другой, затем третий и т. д. Поэтому фаза может оставаться постоянной примерно только в течение 10-8 сек. При усреднении за промежутки времени, много большие 10-8 сек, интерференционный член от двух источников выпадает, так как фазы источников за это время много раз изменятся. Световые ячейки Керра позволяют регистрировать свет с очень большой скоростью, и с их помощью удалось показать, что интерференционный член меняется за время порядка 10-8 сек. Но большинство приборов не может регистрировать свет в столь малые интервалы времени и, естественно, не обнаруживает интерференции. Для глаза время усреднения — порядка 1/10 сек, поэтому увидеть интерференцию обычных источников совершенно невозможно.
Недавно удалось создать источники света, в которых атомы излучают одновременно, и поэтому можно обойти эффект усреднения. Принцип устройства подобных источников весьма сложен, его можно понять, только зная законы квантовой механики. Называются эти источники лазерами. Частота интерференции испущенного лазером света, т. е. время, в течение которого фаза остается постоянной, много больше 10-8 сек. Оно может быть равно сотой, десятой доле секунды и даже целой секунде; с помощью обычных световых ячеек можно определить частоту интерференции между двумя лазерами. Легко также заметить биения при сложении света от двух лазеров. Вне всякого сомнения, скоро станет возможно получать столь медленные биения, что, направив на стенку свет от двух лазеров, можно будет увидеть их невооруженным глазом в виде периодических ослаблений и увеличений яркости пятна!
Еще один пример погашения интерференции представляет собой сложение света не двух, а многих источников. В этом случае A2R равно квадрату суммы большого числа амплитуд (комплексных чисел), т. е. сумме квадратов плюс перекрестные члены от каждой пары. При определенных условиях перекрестные члены могут погаситься и интерференция исчезнет. Например, когда источники распределены в пространстве случайным образом, тогда разность фаз A2 и А3 хотя и постоянна, но значительно отличается от разности фаз A1 и А2 и т. д. В результате получается много косинусов — одни из них положительны, другие отрицательны, а в сумме они почти целиком сокращаются.
Вот почему во многих случаях мы не замечаем эффекта интерференции, а полная интенсивность оказывается равной сумме интенсивностей всех источников.
§ 5. Рассеяние света
Приведенные выше примеры помогут нам понять одно явление, которое возникает в воздухе в результате неупорядоченного расположения атомов. В главе о показателе преломления мы говорили, что падающий свет вызывает излучение атомов. Электрическое поле падающего пучка раскачивает электроны вверх и вниз, и они, двигаясь с ускорением, начинают излучать. Это рассеянное излучение образует пучок света, движущийся в том же направлении, что и падающий луч, но отличающийся от него по фазе, благодаря чему и возникает показатель преломления.
Но что можно сказать об интенсивности рассеянного света в других направлениях? Если атомы очень правильно чередуются, образуя красивый геометрический узор, интенсивность во всех остальных направлениях равна нулю, потому что результат сложения множества векторов с меняющимися фазами сводится к нулю. Но если расположение атомов беспорядочное, интенсивность в любом направлении, как мы уже говорили, равна сумме интенсивностей от каждого атома в отдельности. Более того, атомы газа постоянно движутся, и разность фаз двух атомов, принимающая определенное значение в некоторый момент времени, в следующий момент уже изменится, поэтому при усреднении по времени исчезает каждый перекрестный член в отдельности. Следовательно, для определения интенсивности света, рассеянного газом, можно взять рассеяние на одном атоме и умножить интенсивность на число атомов.