Наконец, последний пример. Предположим, что нам нужно так поставить зеркало, чтобы свет из точки Р всегда приходил в Р' (фиг. 26.11). На любом пути свет должен отразиться от зеркала, и время для всех путей должно быть одинаковым. В данном случае свет проходит только в воздухе, так что время прохождения пропорционально длине пути. Поэтому требование равенства времен сводится к требованию равенства полных длин путей. Следовательно, сумма расстояний r1 и r2 должна оставаться постоянной. Эллипс обладает как раз тем свойством, что сумма расстояний любой точки на его кривой от двух заданных точек постоянна; поэтому свет, отразившись от зеркала, имеющего такую форму, наверняка попадет из одного фокуса в другой.
Этот принцип фокусировки служит для наблюдения света звезд. При постройке большого 200-дюймового телескопа в обсерватории Паломар использовалась следующая идея. Вообразите себе звезду, удаленную от нас на миллиарды километров; мы хотим собрать весь испускаемый ею свет в фокус. Конечно, мы не можем начертить всю траекторию лучей до звезды, тем не менее мы должны проверить, насколько времена на различных траекториях равны. Мы, конечно, знаем, что если множество различных лучей достигло плоскости КК', перпендикулярной направлению лучей, то времена для всех этих лучей будут равны (фиг. 26.12). Далее лучи должны отразиться от зеркала и за равные промежутки времени попасть в фокус Р'.
Фиг. 26 10. Фокусирующая оптическая система.
Фиг. 26.11. Эллиптическое зеркало.
Это означает, что мы должны найти такую кривую, для которой сумма расстояний ХХ'-\-Х'Р' будет постоянна, независимо от выбора точки X. Легче всего это сделать, продолжив отрезок XX' до плоскости LL'. Потребуем теперь, чтобы выполнялись соотношения А'А"=А'Р',В'В"=В'Р', С'С"=С'Р' и т. д.; в этом случае мы получаем нужную нам кривую, потому что сумма длин А 'А+А 'Р' =АА'+А 'А'' будет постоянной для всех точек кривой. Значит, наша кривая есть геометрическое место всех точек, равноудаленных от линии и некоторой заданной точки. Такая кривая называется параболой; вот зеркало телескопа и было изготовлено именно в форме параболы.
Приведенные примеры в общих чертах иллюстрируют принцип устройства оптических систем. Точные кривые можно рассчитать, используя правило равенства времен на всех путях, ведущих в точку фокуса, и требуя, чтобы время прохождения на всех соседних путях было большим.
В следующей главе мы еще вернемся к фокусирующим оптическим системам, а теперь обсудим дальнейшее развитие теории. Когда предлагается новый физический принцип, такой, как принцип наименьшего времени, то нашей первой естественной реакцией могли бы быть слова: «Все это очень хорошо, восхитительно, но вопрос заключается в том, улучшает ли это вообще наше понимание физики?». На это можно ответить: «Да. Посмотрите сколько новых фактов мы теперь поняли!» А кто-то возразит: «Ну, в зеркалах я и так разбираюсь. Мне нужна такая кривая, чтобы каждая касательная к ней плоскость образовывала равные углы с двумя лучами света. Я могу рассчитать и линзу, потому что каждый падающий на нее луч отклоняется на угол, даваемый законом Снелла». Здесь очевидным образом содержание принципа наименьшего действия совпадает с законом равенства углов при отражении и пропорциональности синусов углов при преломлении. Тогда, может быть, это философский вопрос, а может быть, вопрос просто в том, какой путь красивее? Можно привести аргументы в пользу обеих точек зрения.
Однако критерий важности всякого принципа состоит в том, что он предсказывает нечто новое.
Легко показать, что принцип Ферма предсказывает ряд новых фактов. Прежде всего предположим, что имеются три среды — стекло, вода и воздух и мы наблюдаем явление преломления и измеряем показатель n для перехода из одной среды в другую.
Фиг. 26.12. Параболическое зеркало.
Обозначим через n12 показатель преломления для перехода из воздуха (1) в воду (2), а через n13— для перехода из воздуха (1) в стекло (3). Измерив преломление в системе вода— стекло, найдем еще один показатель преломления и назовем его п23 .Здесь заранее нет оснований считать, что n12 , n13 и n23 связаны между собой. Если же исходить из принципа наименьшего времени, то такую связь можно установить. Показатель n12 есть отношение двух величин—скорости света в воздухе к скорости света в воде; показатель n13 есть отношение скорости в воздухе к скорости в стекле, а n23 есть отношение скорости в воде к скорости в стекле. Поэтому, сокращая скорость света в воздухе, получаем