Выбрать главу

(26.5)

Другими словами, мы предсказываем, что показатель преломле­ния для перехода из одного материала в другой можно получить из показателей преломления каждого материала по отношению к некоторой среде, скажем воздуху или вакууму. Таким обра­зом, измерив скорость света во всех средах, мы образуем одно число для каждой среды — показатель преломления для пере­хода из вакуума в среду — и называем его ni (например, ni для воздуха есть отношение скорости в воздухе к скорости в вакууме и т. д.), после чего легко написать нужную формулу. Показатель преломления для любых двух материалов i и j равен

(26.6)

Используя только закон Снелла, подобное соотношение пред­сказать невозможно. Но связь эта существует. Соотношение (26.5) известно давно и послужило сильным аргументом в поль­зу принципа наименьшего времени.

Еще одно предсказание принципа наименьшего времени со­стоит в том, что скорость света в воде при измерении должна оказаться меньше скорости света в воздухе. Это уже предсказа­ние совсем другого рода. Оно гораздо глубже, потому что носит теоретический характер и никак не связано с наблюдениями, из которых Ферма вывел принцип наименьшего времени (до сих пор мы имели дело только с углами). Как оказалось, скорость света в воде действительно меньше скорости в воздухе, и ровно настолько, чтобы получился правильный показатель преломле­ния.

§ 5, Более точная формулировка принципа Ферма

До сих пор мы фактически пользовались неправильной фор­мулировкой принципа наименьшего времени. Здесь мы сформу­лируем его более точно. Мы неправильно называли его принци­пом наименьшего времени и для удобства по ходу дела применя­ли неправильную его трактовку. Но теперь мы выясним точное содержание принципа. Пусть имеется зеркало. Мы его показали на

фиг. 26.3. Откуда свет знает, что он должен двигаться к зер­калу? Очевидно, путь, требующий наименьшего времени,— это линия АВ, Кое-кто поэтому может сказать: «Иногда этот путь требует как раз наибольшего времени». Так это неправильно! Путь по кривой наверняка займет еще больше времени! Точная формулировка принципа следующая: луч, проходящий по тра­ектории, обладает тем свойством, что любое малое изменение пути (скажем, на 1%), расположения точки падения луча на зеркало, или формы кривой, или какие-либо иные изменения, не приводит в первом порядке к изменению времени прохождения; изменение времени происходит только во втором порядке. Другими словами, согласно этому принципу, свет вы­бирает один путь из множества близлежащих, требующих почти одинакового времени для прохождения.

С принципом наименьшего времени связана еще одна труд­ность, которую многие, не любящие такого рода теории, никак не могут переварить. Теория Снелла помогает легко «понять» поведение света. Свет проходит, видит перед собой поверхность и отклоняется, потому что на поверхности с ним что-то происхо­дит. Легко понять идею причинности, проявляющуюся в том, что свет идет из одной точки в другую, а затем в следующую. Но принцип наименьшего времени есть философский принцип, ко­торый совсем иначе объясняет причину явлений в природе. Вместо причинной обусловленности, когда из одного нашего действия вытекает другое и т. д., этот принцип говорит следую­щее: в данной ситуации свет выбирает путь с наименьшим, или экстремальным временем. Но как удается свету выбирать свой

Фиг. 26.13, Прохождение радио­волн сквозь узкую щель.

путь? Вынюхивает он что ли соседние пути и сравнивает их потом друг с другом? В некотором смысле так и происходит. Эту способность света нельзя понять в рамках геометрической оптики, поскольку она связана с понятием длины волны; длина волны, грубо говоря, есть тот отрезок впереди лежащего пути, который свет может «почувствовать» и сравнить с соседними путями. Этот факт трудно продемонстрировать на опыте со светом, так как длина волны света чрезвычайно мала. Но радио­волны с длиной волны, скажем, 3 см, «видят» намного даль­ше. Предположим, имеется источник радиоволн, детектор и экран со щелью, как показано на фиг. 26.13; при этих усло­виях лучи будут проходить из S в D, поскольку это прямо­линейная траектория, и даже если сузить щель, лучи все равно пройдут. Но если теперь отодвинуть детектор в точку D', то при широкой щели волны не пойдут из S в D', потому что они сравнят близлежащие пути и скажут: «Нет, друг мой, все эти пути требуют другого времени». С другой стороны, если оставить только узенькую щелку и таким образом по­мешать волнам выбирать путь, то окажутся годными уже несколько путей и волны пойдут по ним! Если щель узкая, в точку D' попадет больше излучения, чем через широкую щель! Такой же опыт возможен со светом, но в большом масштабе его проделать трудно. Этот эффект, однако, можно наблюдать в следующих простых условиях. Найдите маленький и яркий ис­точник света, например уличный фонарь, где-нибудь в конце ули­цы или отражение солнца от колеса автомобиля. Поставьте перед глазами два пальца, оставив для света узенькую щель, и посте­пенно сближайте пальцы, пока щель полностью не исчезнет. Вы увидите, что свет, который вначале казался крохотной точкой, начнет расплываться и даже вытянется в длинную линию. Про­исходит это потому, что между пальцами оставлена лишь очень маленькая щель и свет не идет, как обычно, по прямой, а рас­ходится под некоторым углом и в глаз попадает с разных направ­лений. Если вы будете достаточно внимательны, то заметите еще боковые максимумы и своеобразную кайму по краям.