Все это немного нас обескураживает. Если правильно, что всякий раз, когда мы «видим» электрон, получаются одинаковые вспышки, то все увиденные нами до сего времени электроны были возмущенными электронами. Давайте тогда опыт с тусклым светом проведем иначе. Теперь, услышав щелчок в детекторе, мы будем ставить палочку в одну из трех колонок: в первую, если электрон замечен у отверстия 1, во вторую, если его видели у отверстия 2, и в третью, если его вообще не видели. Обработав данные (рассчитав вероятности), мы получим следующие результаты: «виденные у отверстия 1» будут распределены по закону P'1 , «виденные у отверстия 2» — по закону Р'2 (так что «виденные либо у отверстия 1, либо у отверстия 2» распределяются по закону P'12), а «незамеченные» распределены «волноподобно», как Р12 на фиг. 37.3! Если электроны не видимы, возникает интерференция!
Это уже можно понять. Когда мы не видим электрон, значит, фотон не возмутил его; а если уж мы его заметили, значит, он возмущен фотоном. Степень возмущения всегда одна и та же, потому что все фотоны света производят эффекты одинаковой величины, достаточной для того, чтобы смазать любые интерференционные эффекты.
Но нет ли хоть какого-нибудь способа увидеть электрон, не возмущая его? Мы уже говорили о том, что импульс, уносимый фотоном, обратно пропорционален его длине волны (р=h/l). Чем больше импульс у фотона, тем сильнее он толкает электрон, когда рассеивается на нем. Ага! Раз мы хотим как можно слабее возмущать электроны, то не стоит снижать интенсивность света, лучше снизить его частоту (или, что то же самое, увеличить длину волны). Нужно осветить электроны красным светом. Можно воспользоваться даже инфракрасным светом или радиоволнами (как в радаре). При помощи оборудования, приспособленного для восприятия длинноволнового света, можно тоже разглядеть, куда направился электрон. Может быть, более «мягкий» свет поможет нам избежать сильного возмущения электронов.
Ну что ж, примемся экспериментировать с длинными волнами. Будем повторять наш опыт, увеличивая все больше и больше длину волны. На первых порах ничего не изменится, все результаты будут прежними. А потом произойдет ужасно неприятная вещь. Вы помните, что, изучая микроскоп, мы заметили, что вследствие волновой природы света появляются ограничения на расстояния, на которых два пятна еще не сливаются в одно. Это расстояния порядка длины волны света. И вот теперь это ограничение опять всплывает. Как только длина волны сравняется с промежутком между отверстиями, вспышки станут такими размытыми, что невозможно будет разобрать, возле какого отверстия произошла вспышка! Мы не сможем больше угадывать, какой дыркой воспользовался электрон! Известно, что где-то проскочил, а где — неясно! И это как раз при таком цвете, когда толчки становятся еле заметными, а кривая Р'12 начинает походить на P12 , т. е. начинает чувствоваться интерференция. И только при длинах волн, намного превышающих расстояние между отверстиями (когда уже нет никакой возможности разобрать, куда прошел электрон), возмущение, причиняемое светом, становится таким слабым, что снова появляется кривая Р12 (см. фиг. 37.3).
В нашем опыте мы обнаружили, что невозможно приспособить свет для того, чтобы узнавать, через какое отверстие проник электрон, и в то же время не исказить картины. Гейзенберг предположил, что новые законы природы были бы совместимы друг с другом только в том случае, если бы существовали некоторые фундаментальные ограничения на наши экспериментальные возможности, ограничения, которых прежде не замечали. Он предложил в качестве общего принципа свой принцип неопределенности. В терминах нашего эксперимента он звучит следующим образом: «Невозможно соорудить аппарат для определения того, через какое отверстие проходит электрон, не возмущая электрон до такой степени, что интерференционная картина пропадает». Если аппарат способен определять, через какую щель проходит электрон, он не способен оказаться столь деликатным, чтобы не исказить картину самым существенным образом. Никому никогда не удалось изобрести или просто указать способ, как обойти принцип неопределенности. Значит, мы обязаны допустить, что он описывает одну из основных характеристик природы.