Выбрать главу

Все это немного нас обескураживает. Если правильно, что всякий раз, когда мы «видим» электрон, получаются одинаковые вспышки, то все увиденные нами до сего времени электроны были возмущенными электронами. Давайте тогда опыт с тусклым светом проведем иначе. Теперь, услышав щелчок в детекторе, мы будем ставить палочку в одну из трех колонок: в первую, если электрон замечен у отверстия 1, во вторую, если его ви­дели у отверстия 2, и в третью, если его вообще не видели. Обработав данные (рассчитав вероятности), мы получим следую­щие результаты: «виденные у отверстия 1» будут распределены по закону P'1 , «виденные у отверстия 2» — по закону Р'2 (так что «виденные либо у отверстия 1, либо у отверстия 2» распреде­ляются по закону P'12), а «незамеченные» распределены «волноподобно», как Р12 на фиг. 37.3! Если электроны не видимы, возникает интерференция!

Это уже можно понять. Когда мы не видим электрон, значит, фотон не возмутил его; а если уж мы его заметили, значит, он возмущен фотоном. Степень возмущения всегда одна и та же, потому что все фотоны света производят эффекты одинаковой величины, достаточной для того, чтобы смазать любые интерфе­ренционные эффекты.

Но нет ли хоть какого-нибудь способа увидеть электрон, не возмущая его? Мы уже говорили о том, что импульс, уноси­мый фотоном, обратно пропорционален его длине волны (р=h/l). Чем больше импульс у фотона, тем сильнее он толкает электрон, когда рассеивается на нем. Ага! Раз мы хотим как можно слабее возмущать электроны, то не стоит снижать ин­тенсивность света, лучше снизить его частоту (или, что то же самое, увеличить длину волны). Нужно осветить электроны красным светом. Можно воспользоваться даже инфракрасным светом или радиоволнами (как в радаре). При помощи оборудо­вания, приспособленного для восприятия длинноволнового света, можно тоже разглядеть, куда направился электрон. Может быть, более «мягкий» свет поможет нам избежать сильного воз­мущения электронов.

Ну что ж, примемся экспериментировать с длинными вол­нами. Будем повторять наш опыт, увеличивая все больше и больше длину волны. На первых порах ничего не изменится, все результаты будут прежними. А потом произойдет ужасно неприятная вещь. Вы помните, что, изучая микроскоп, мы заметили, что вследствие волновой природы света появляются ограничения на расстояния, на которых два пятна еще не сли­ваются в одно. Это расстояния порядка длины волны света. И вот теперь это ограничение опять всплывает. Как только длина волны сравняется с промежутком между отверстиями, вспышки станут такими размытыми, что невозможно будет разобрать, возле какого отверстия произошла вспышка! Мы не сможем больше угадывать, какой дыркой воспользовался электрон! Известно, что где-то проскочил, а где — неясно! И это как раз при таком цвете, когда толчки становятся еле заметными, а кривая Р'12 начинает походить на P12 , т. е. начи­нает чувствоваться интерференция. И только при длинах волн, намного превышающих расстояние между отверстиями (когда уже нет никакой возможности разобрать, куда прошел элект­рон), возмущение, причиняемое светом, становится таким сла­бым, что снова появляется кривая Р12 (см. фиг. 37.3).

В нашем опыте мы обнаружили, что невозможно приспосо­бить свет для того, чтобы узнавать, через какое отверстие про­ник электрон, и в то же время не исказить картины. Гейзенберг предположил, что новые законы природы были бы совместимы друг с другом только в том случае, если бы существовали некоторые фундаментальные ограничения на наши эксперименталь­ные возможности, ограничения, которых прежде не замечали. Он предложил в качестве общего принципа свой принцип неоп­ределенности. В терминах нашего эксперимента он звучит следующим образом: «Невозможно соорудить аппарат для опре­деления того, через какое отверстие проходит электрон, не воз­мущая электрон до такой степени, что интерференционная кар­тина пропадает». Если аппарат способен определять, через какую щель проходит электрон, он не способен оказаться столь деликатным, чтобы не исказить картину самым существенным образом. Никому никогда не удалось изобрести или просто указать способ, как обойти принцип неопределенности. Значит, мы обязаны допустить, что он описывает одну из основных ха­рактеристик природы.