Выбрать главу

Примерно в 1890 г. Джинс заговорил вновь об этой загадке. Часто приходится слышать, что физики конца девятнадцатого столетия были уверены в том, что им известны все существен­ные законы природы и дело стоит лишь за тем, чтобы получить нужные числа с максимальным числом десятичных знаков. Кто-то это сказал, а остальные повторяют. Но если покопаться в физических журналах тех лет, то станет ясно, что почти каж­дый из них в чем-нибудь да сомневался. Джинс говорил об этой проблеме как о загадочном явлении, из которого как будто бы следует, что по мере падения температуры некоторые виды движения «замерзают».

Если бы мы могли предположить, что колебаний при низ­ких температурах нет и возникают они только при высоких темпе­ратурах, то можно было бы представить существование такого газа, у которого при очень низкой температуре колебательного движения нет совсем, так что g=1,40, а при высоких темпера­турах возникают колебания и, следовательно, g убывает. То же самое можно предположить и о вращениях. Если бы можно было избавиться от вращений, скажем, «заморозить» их, по­низив достаточно температуру, то стало бы понятно, почему при низких температурах для водорода g приближается к 1,66. Но как же понять все это? Конечно, оставаясь в рамках классической механики, «замерзающих» движений нельзя объяснить. Все стало на свои места лишь после открытия квантовой меха­ники.

Мы сформулируем без доказательства основные результаты статистической механики, построенной на основе квантовой механики. Напомним, что, согласно квантовой механике, свя­занная потенциалом система, например осциллятор, имеет дискретный набор уровней энергии, т. е. состояний с различ­ной энергией. Возникает вопрос: как модифицировать стати­стическую механику, чтобы привести ее в согласие с квантовой механикой? Обратите внимание на интересную деталь: хотя большинство задач квантовой механики сложнее соответствую­щих задач классической физики, проблемы статистической ме­ханики решаются с помощью квантовой теории много проще!

Простенький результат классической механики, что n= n0ехр(-энергия/kT), становится в квантовой теории весьма важной теоремой: если набор молекулярных состояний характе­ризуется энергиями Е0, Е1, e2, ..., Еi, ..., то в случае теплового равновесия вероятность найти молекулу в состоянии с энергией Еiпропорциональна ехр(-Ei/kT). Так определяется вероят­ность пребывания в различных состояниях. Иначе говоря, относительный шанс — вероятность нахождения в состоянии Е1по сравнению с вероятностью нахождения в состоянии Е0равен

это, конечно, то же самое, что и

потому что Р1=n1/N, а Р0=n0/N. Таким образом, состояния с большей энергией менее вероятны, чем состояние с меньшей энергией. Отношение числа атомов в верхнем состоянии к числу атомов в нижнем состоянии равно е в степени (разность энергий, деленная на kT,с обратным знаком) — очень простая тео­рема.

Обратим внимание на то, что уровни энергии гармоническо­го осциллятора отстоят друг от друга на равных расстояниях. Припишем низшему уровню энергию Е0=0 (на самом деле эта энергия немного отличается от нуля, но сдвиг всех уровней на одну и ту же величину не имеет значения), тогда энергия следующего уровня E1=hw, затем следует 2hw, 3hw) и т. д.

А теперь посмотрим, что из этого получится. Предположим, что мы изучаем колебания двухатомной молекулы, которую можно сейчас считать гармоническим осциллятором. Каковы относительные шансы найти молекулу в состоянии Е1, а не в состоянии Е0? Ответ: Отношение шанса найти молекулу в состоянии Е1 к шансу найти эту молекулу в состоянии Е0равно ехр(-hw/kT}. Предположим, что kT много меньше hw, т. е. мы находимся в области низких температур. Тогда вероятность обна­ружить состояние e1чрезвычайно мала. Практически все моле­кулы находятся в состоянии Е0. Если изменить температуру, но по-прежнему поддерживать ее очень малой, то шанс найти мо­лекулу в состоянии Е1=hwпо-прежнему бесконечно мал — энергия осциллятора все еще почти равна нулю; она не изменяется с температурой, пока температура остается много меньше hw. Все осцилляторы находятся в низшем состоянии, их дви­жение эффективно «заморожено», и они не дают вклада в теп­лоемкость. С помощью данных табл. 40.1 можно установить, что при 100°С, а это равно 373˚К (абсолютной температуры), kT много меньше колебательной энергии молекул кислорода и водорода, но сравнимо с колебательной энергией иода. При­чина такой разницы в том, что атомы иода гораздо тяжелее атомов водорода и, хотя силы, действующие менаду атомами иода и водорода, сравнимы, молекула иода столь тяжела, что собственная частота ее колебаний чрезвычайно мала по срав­нению с собственной частотой водорода. При комнатной тем­пературе kT таково, что hwводорода больше kT, а hw иода — меньше. Поэтому классическую колебательную энергию можно обнаружить только у иода.

Если увеличивать температуру газа, начав с очень малых значений Т, когда почти все молекулы находятся в их низшем состоянии, то появляется ощутимая вероятность найти моле­кулу во втором состоянии, затем в следующем за ним и т. д. Когда много состояний получают заметную вероятность, газ ведет себя более или менее так, как того требует классическая физика, ведь в этом случае систему квантовых состояний труд­но отличить от непрерывного распределения энергии, и система может обладать почти любой энергией. Таким образом, при повышении температуры мы снова попадаем в область класси­ческой физики, как это видно из фиг. 40.6. Аналогично можно показать, что точно так же квантуются и вращательные состояния атомов, но эти состояния размещены так тесно, что обычно kT больше расстояния между уровнями. В этом случае возбуждено сразу много уровней и вращательная кинетиче­ская энергия системы ведет себя классически. Лишь водород при комнатных температурах ведет себя иначе.

Это первый случай, когда из сравнения с экспериментом обнаружилось, что с классической физикой что-то неблагополуч­но, мы искали способы уладить все трудности в квантовой механике тем самым путем, каким это происходило на самом деле. Прошло примерно лет 30 или 40, пока не была обнаружена еще одна трудность, и снова в статистической механике, но на этот раз в механике фотонного газа. Новая задача была решена Планком в первые годы нашего столетия.

* Чтобы вычислить этот интеграл, положим

Тогда

а это двойной интеграл в xy-плоскости. Но его можно вычислить и в полярных координатах:

 

 

Глава 41

БРОУНОВСКОЕ ДВИЖЕНИЕ

§ 1. Равнораспре­деление энергии